
NOTES ON RONG’S CYCLICITY THEOREM

ABSTRACT. Self-learning notes on Rong’s C (n)-cyclicity theorem about fundamental groups of
closed manifolds with positive sectional curvature and S1 symmetry.
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Theorem A (Rong). Let M be a closed n-manifold of sec ≥ 1. Suppose that its universal cover
M̃ admits an isometric S1-action, then π1(M) contains a cyclic subgroup of index at most C (n).

Rong’s theorem in its original form also requires that S1-action commutes with π1-action.
With a later result by Su-Wang (see Theorem 3.4), this assumption can be dropped because
one can always find a subgroup of π1(M) with bounded index that commutes with S1.

It is conjectured by Rong that the circle symmetry condition in Theorem A can be dropped.

Conjecture 0.1 (Rong). Let M be a closed n-manifold of sec ≥ 1. Then π1(M) contains a cyclic
subgroup of index at most C (n).

1. SYNGE’S THEOREM

Theorem 1.1 (Synge). Let M n be a closed and orientable manifold with sec ≥ 1.
(1) If n is even, then M is either simply connected or not orientable.
(2) If n is odd, then M is orientable.

Lemma 1.2. Let M n be a closed manifold with sec ≥ 1. Given a minimal geodesic γ : [0, l ] → M
of unit speed and a normal parallel vector field V (t ) along γ. We consider the variation Γs(t ) =
expγ(t ) sV (t ), where s ∈ (−ϵ,ϵ). Then there is s ∈ (−ϵ,ϵ) such that length(Γs) < length(γ).

Proof. By the formula of second variation,
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Rm(V ,γ′,γ′,V )d t < 0.

The result follows. □

Weinstein later rephrased the proof of Synge’s theorem so as to establish fixed points of
isometries.

Theorem 1.3 (Weinstein). Let M n be a closed and orientable manifold with sec ≥ 1.
(1) If n is even, then any orientation preserving isometry φ of M has a fixed point.
(2) If n is odd, then any orientation reversing isometry φ of M has a fixed point.
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2 NOTES ON RONG’S CYCLICITY THEOREM

Proof. (1) Suppose that φ does not have any fixed points. We choose z ∈ M such that

d(z,φ(z)) = min
x∈M

d(x,φ(x)) =: l > 0.

We join z and φ(z) by a minimal geodesic γ : [0, l ] → M . First note that dφ(γ′(0)) = γ′(l );
otherwise, for any t ∈ (0, l ), we have

d(γ(t ),φ◦γ(t )) < d(γ(t ),γ(l ))+d(γ(l ),φ◦γ(t )) = (l − t )+ t = l ,

which is a contradiction to the choice of z.
Let Nt be the orthogonal complement of γ′(t ) in Tγ(t )M . Note that we have two linear

isometries
dφ : N0 → Nl , Pγ : N0 → Nl ,

where Pγ is the parallel transport along γ. Then

P−1
γ ◦dφ : N0 → N0

is an element of SO(n−1), where n−1 is odd. Thus it must have an eigenvector v with eigen-
value 1; in other words, we have a nonzero vector v ∈ N0 such that dφ(v) = Pγ(v). We par-
allel transport v along γ to obtain a normal parallel vector field V (t ) such that V (0) = v and
V (l ) = dφ(v).

We consider the variation Γs(t ) = expγ(t ) sV (t ), where s ∈ (−ϵ,ϵ). By Lemma 1.2, there is
some s such that Γs is shorter than γ. Let y = Γs(0). Note that

Γs(l ) = expγ(l ) sV (l ) = expφ(z) sdφ(v) =φ◦expz sv =φ(y).

We end in a contradiction to the choice of z because

d(y,φ(y)) ≤ length(Γs) < length(γ) = d(φ(z), z).

This completes the proof of (1).
(2) The proof is similar. If n is odd and φ is orientation reversing, then the same argument

in (1) leads to P−1
γ ◦dφ ∈ O(n − 1) with determinant −1 and n − 1 being even. Hence it has

eigenvalue 1 and the remaining proof goes through. □

Theorem 1.4 (Berger). Let M n be a closed manifold with sec ≥ 1, where n is even. Then any
isometric S1-action of M has a fixed point.

Proof. We first assume that M is orientable. Let θ ∈ S1 such that 〈θ〉 is dense in S1. Because θ
is orientation preserving and n is even, by Theorem 1.3, θ has a fixed point x0. It follows that
S1-action fixes x0.

If M is not orientable. Let M̂ be its orientable double cover. We can lift the S1-action on M
to a S1-action on M̂ . Then the fixed point on M̂ projects to a fixed point on M . □

2. AN EQUIVARIANT VERSION OF SYNGE’S THEOREM

Theorem 2.1 (Rong). Let M be a closed manifold with sec ≥ 1 and circle symmetry. If φ is
an isometry of M without fixed points that commutes with S1-action, then φ preserves a circle
orbit.

We remark that Theorem 2.1 also holds for φ that has fixed points. For the sake of proving
Rong’s cyclicity theorem, φ comes from π1(M)-action on M̃ , so we can always assume that φ
does not have fixed points.
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For a G-action on M , below we denote the isotropy subgroup of G at x by

Gx = {g ∈G|g ·x = x}.

Lemma 2.2 (Kleiner). Let M be a complete manifold with an isometric G-action. Let γ : [0, l ] →
M be a minimal geodesic between G ·γ(0) and G ·γ(l ). Then Gγ(t ) is constant for t ∈ (0, l ) and is
a subgroup of Gγ(0) ∩Gγ(l ).

Proof. We first prove that Gγ(t ) ≤ Gγ(0) ∩Gγ(l ), where t ∈ (0, l ). Suppose that g ∈ G − {e} fixes
γ(t ) but moves γ(l ). Then g ◦γ is also a minimal geodesic between G ·γ(0) and G ·γ(l ). We
note that

d(γ(0), g ·γ(l )) ≥ l = d(γ(0),γ(t ))+d(γ(t ),γ(l )) = d(γ(0),γ(t ))+d(gγ(t ), gγ(l )).

Thus γ|[0,t ] joining g ◦ γ|[t ,l ] is a minimal geodesic between γ(0) and g · γ(l ). We obtain a
branching geodesic; a contradiction.

Next, we show that Gγ(t ) is constant for t ∈ (0, l ). Let 0 < t < s < l . Observe that γ|[0,s] is a
minimal geodesic between G ·γ(0) and G ·γ(s). Then we have Gγ(t ) ≤Gγ(s). The other direction
similarly follows. □

Proof of Theorem 2.1. We consider the case that n is odd, then M is orientable and φ is orien-
tation preserving. The proof for even dimensions is similar.

The proof is by induction on n = dim M . We assume that the statement holds for odd di-
mension ≤ n−2 and prove the inductive step first. We will visit the base case n = 3 afterwards.

Suppose that φ does not preserve any circle orbits. We choose z ∈ M such that

d(z,φ(S1z)) = min
x∈M

d(S1x,φ(S1x)) = l > 0.

Let γ be a minimal geodesic from z to φ(S1z) = S1(φ(z)). We write its end point as γ(l ) =
θ ·φ(z), where θ ∈ S1.

Claim: S1
γ(t ), the isotropy subgroup of S1 at γ(t ), is constant for t ∈ [0, l ]. We consider the

curve (θ ◦φ)◦γ. Similar to the proof of Theorem 1.3, we can show that d(θ ◦φ)(γ′(0)) = γ′(1).
Otherwise, for any t ∈ (0, l ) we would have

d(γ(t ), (θ ◦φ)◦γ(t )) < d(γ(t ),γ(l ))+d(γ(l ), (θ ◦φ)◦γ(t )) = (l − t )+ t = l ,

which contradicts to the choice of z. This also shows that the curve constructed by joining
γ|[s,l ] and (θ ◦φ)◦γ|[0,s] is minimal between S1 ·γ(s) and S1 · (φ◦γ(s)). By Lemma 2.2, we have
S1
γ(l ) ≤ S1

γ(s). Similarly, one can show the inclusion at γ(0). This proves the Claim.

Below, we write H = S1
γ(t ) = S1

z .

Case 1. H = {e}. Let M0 be the set of all points where S1 acts freely. M0 is open in M . Let

π : M → M = M/S1

be the quotient map and let M 0 = π(M0). M 0 is open in M and carries a Riemannian metric
with sec ≥ 1. Because φ commutes with S1-action, φ descends to φ ∈ Isom(M). Using the fact
that φ does not have fixed points, it is direct to check that φ maps to M 0 to M 0. Moreover,
φ ∈ Isom(M 0) is orientation preserving. By the assumption H = {e}, γ = π(γ) is a minimal
geodesic contained in M 0. These set up the conditions to run a variation argument as in the
proof of Theorem 1.3, which leads to a contradiction to the choice of z.

Case 2. H =Zh . We write its fixed point set

M H = {x ∈ M |H · x = x} =∪F j
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as a union of components with F0 containing z. Because H-action preserves orientation, F0

is a closed totally geodesic submanifold of even codimension and sec ≥ 1. Since φ commutes
with H , φ permutates the components of M H . Observe that γ is a minimal geodesic in F0,
then we see that φ preserves F0 because

φ(z) = θ−1 ·γ(l ) ∈ θ−1(F0) = F0.

Now we have a triple (F0,φ,S1) with the desired properties to complete the induction. Hence
φ preserves some circle orbit in F0. This completes Case 2.

Case 3. H = S1. We will construct a suitable variation of γ. Let Nt be the orthogonal com-
plement of γ′(t ) in Tγ(t )M . Because S1-action fixes γ, it acts on Nt by differential, written as
dθ for θ ∈ S1. We have two linear isometries

Pγ : N0 → Nl , dφ : N0 → Nl .

We note that dθ and Pγ commutes because both Pγ(dθ(v)) and dθ(Pγ(v)) are parallel fields
along γ with the same initial condition.

Claim: There is a unit vector v ∈ N0 and θ ∈ S1 such that

Pγ(v) = d(φ◦θ)(v).

Let Sn−2 be the unit sphere in N0. The map

ψ= dφ−1 ◦Pγ : Sn−2 → Sn−2

commutes with S1-action on Sn−2. If ψ has a fixed point v , then this v and θ = e fulfill
the property. If ψ does not have fixed points, then we apply the inductive assumption to
(Sn−2,ψ,S1) to obtain a circle orbit S1 · v that is preserved by ψ. In other words, we have
v ∈ Sn−2 and θ ∈ S1 such that ψ(v) = dθ(v). This proves the Claim.

We continue to deal with Case 3. We parallel transport v along γ to obtain V (t ) and then
consider the variation Γs(t ) = expγ(t ) sV (t ). By Lemma 1.2, there is some s such that Γs is
shorter than γ. Set y = Γs(0). We note that

Γs(l ) = expγ(l ) sV (l ) = expφ(z) sd(φ◦θ)(v) =φ◦θ(expz sv) =φ◦θ(y).

Then we end in a desired contradiction because

d(y,φ(S1 y)) ≤ d(y,φ◦θ(y)) ≤ length(Γs) < length(γ) = d(z,φ(S1z)).

We have completed the inductive step. For the base step n = 3. The above argument leads
to the situation (S1,φ,S1), then it is trivial that φ preserves the circle orbit.

For the proof in even dimensions, by Theorems 1.1 and 1.3, M is simply connected and
φ reverses the orientation. All three cases in the above proof go through with some clear
modifications. In the base step n = 2, that is, (S2,φ,S1), case 1 leads to M/S1 = [−1,1], then φ

clearly has a fixed point. Both cases 2 and 3 cannot occur on (S2,φ,S1). □

3. PROOF OF CYCLICITY

3.1. Bounding the index of F0-preserving subgroup. Below we always write p as a prime
number.

Lemma 3.1. Let N be a closed manifold with sec ≥ 1. Suppose that N has two commuting
isometric actions: a S1-action and a free Γ-action such that
(1) 〈S1,Γ〉 has a Zp -subgroup whose action commutes with Γ-action;
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(2) this Zp -action fixes a point x0 ∈ N .
Let F0 be the component of NZp containing x0, and letΛ be the subgroup of Γ that preserves F0.
Then [Γ :Λ] ≤ b(n).

For application of Lemma 3.1 in the next subsection, N will be the universal cover or an
intermediate cover of M .

The proof of Lemma 3.1 is rather short but it relies on two big theorems below.

Theorem 3.2 (Smith). Let M be a closed manifold with a Zp -action. Then

rankH∗(MZp ,Zp ) ≤ rankH∗(M ,Zp ).

Theorem 3.3 (Gromov). Let M n be a closed manifold with sec ≥ 0. Then for any field F ,

rankH∗(M ,F ) ≤ b(n).

Proof of Lemma 3.1. Note that for any β1,β2 ∈ Γ,

β1Λ=β2Λ ⇐⇒ β−1
2 β1 ∈Λ ⇐⇒ β−1

2 β1F0 = F0 ⇐⇒ β1F0 =β2F0.

Because β commutes with Zp for all β ∈ Γ, βF0 is a component of NZp . Hence we can define
an injective map

Γ/Λ→ components of NZp , βΛ 7→βF0.

Together with Theorems 3.2 and 3.3, we conclude

[Γ :Λ] ≤ # components of NZp ≤ rankH∗(NZp ,Zp ) ≤ rankH∗(N ,Zp ) ≤ b(n).

□

3.2. Induction.

Theorem 3.4 (Su-Wang). Let M be a closed manifold with a finite π1(M). If M̃ has an isometric
S1-action, then π1(M) has a subgroup of index at most C (n) whose action commutes with S1-
action.

Theorem 3.5 (Kapovitch-Petrunin-Tuschmann). There are positive constants ϵ(n) and C (n)
such that for any closed n-manifold with

sec ≥−ϵ(n), diam(M) = 1,

its fundamental group π1(M) must contain a nilpotent subgroup of index at most C (n).

With the above two theorems, to prove Theorem A, we can always assume that π1(M) is
nilpotent and commutes with S1-action after passing to an intermediate cover of bounded
index.

Proof of Theorem A. We prove Theorem A by induction. Suppose that the statement holds in
dimension ≤ n − 2, where n is odd. We shall prove the theorem for dimension n. The base
step n = 3 will be discussed at the end.

Case 1. The S1-action on M̃ has a nontrivial finite isotropy subgroup at some point x0 ∈ M̃.
We pick aZp -subgroup in the finite isotropy subgroup, where p is a prime. ThisZp -subgroup

satisfies the assumptions of Lemma 3.1 with (N ,Γ) = (M̃ ,π1(M)). We denote F0 the compo-
nent of M̃Zp containing x0 and Λ ≤ π1(M) the subgroup preserving F0. Then by Lemma 3.1,
[π1(M) :Λ] ≤ b(n).
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F0 is a connected and totally geodesic submanifold of even codimension and S1 symmetry.
By inductive assumption, π1(F0/Λ) has a cyclic subgroup Zh of index at most C (n −2). The
covering map F0 → F0/Λ provides a short exact sequence

0 →π1(F0) →π1(F0/Λ)
ψ→Λ→ 0.

Then
[Λ :ψ(Zh)] ≤ [π1(F0/Λ) :Zh] ≤C (n −2).

Hence the cyclic subgroup ψ(Zh) satisfies

[π1(M) :ψ(Zh)] ≤ [π1(M) :Λ] · [Λ :ψ(Zh)] ≤ b(n)C (n −2).

This completes the proof of Case 1.
Case 2. Any isotropy subgroup from the S1-action on M̃ is trivial or S1.
Let H =π1(M)∩S1 = 〈α〉. We consider the intermediate cover

(M̂ , Γ̂, Ŝ1) = (M̃/H ,π1(M)/H ,S1/H).

We remark that if H is trivial, then there is no need for this step and the proof below directly
goes through on M̃ . On M̂ , Ŝ1-action and Γ̂ action commutes. Also, Ŝ1 ∩ Γ̂ is trivial. By the
nilpotency of Γ̂, we can choose an element β̂ ∈ Z (Γ̂) of prime order p. Applying Theorem 2.1,
we see that β̂ preserves a circle orbit Ŝ1 · x̂0 in M̂ . Let t̂0 ∈ Ŝ1 such that t̂0β̂x̂0 = x̂0. Because
Ŝ1 ∩ Γ̂= {e}, the element t̂0β̂ is non-identity.

It is not difficult to see that t̂0β̂ also has order p. By construction, this Zp -subgroup 〈t̂0β̂〉
satisfies the assumptions of Lemma 3.1 with (N ,Γ) = (M̂ , Γ̂). Under the similar notations

M̂Zp =∪F̂ j , x̂0 ∈ F̂0, Λ̂= {γ̂ ∈ Γ̂|γ̂F̂0 = F̂0}.

It follows from Lemma 3.1 that [Γ̂ : Λ̂] ≤ b(n).
Then following the same proof in Case 1, we can obtain a dimension reduction on F̂0/Λ̂

and find a cyclic subgroup 〈γ̂〉 in Γ̂ of index at most C (n). Let γ ∈ π1(M) be a lift of this γ̂ ∈
Γ̂= π1(M)/〈α〉. By Theorem 2.1, γ preserves some circle orbit S1x0 on M̃ . Note that this S1x0

is a free circle orbit due to the assumption of Case 2. We choose the unique θ ∈ S1 such that
γx0 = θx0 and define a group homomorphism by

ψ : 〈α,γ〉→ S1 such that ψ(α) =α, ψ(γ) = θ.

If a word w of 〈α,γ〉 is in the kernel of ψ, then w · x0 = x0 and thus w = e. Hence ψ is injective
and 〈α,γ〉 must be cyclic. Now we complete the proof of Case 2 by

[π1(M) : 〈α,γ〉] ≤ [π1(M)/H : 〈α,γ〉/H ] = [Γ̂ : γ̂] ≤C (n).

For the base step n = 3, in either case above, we obtain (F0,Λ) or (F̂0,Λ̂) is (S1,Λ). Hence Λ
is cyclic. □
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