NOTES ON RONG'S CYCLICITY THEOREM

ABSTRACT. Self-learning notes on Rong's *C*(*n*)-cyclicity theorem about fundamental groups of closed manifolds with positive sectional curvature and *S* 1 symmetry.

CONTENTS

Theorem A (Rong). Let M be a closed n-manifold of sec ≥ 1 . Suppose that its universal cover \widetilde{M} admits an isometric S 1 -action, then $\pi_1(M)$ contains a cyclic subgroup of index at most C(n).

Rong's theorem in its original form also requires that S^1 -action commutes with π_1 -action. With a later result by Su-Wang (see Theorem [3.4\)](#page-4-1), this assumption can be dropped because one can always find a subgroup of $\pi_1(M)$ with bounded index that commutes with $S^1.$

It is conjectured by Rong that the circle symmetry condition in Theorem A can be dropped.

Conjecture 0.1 (Rong). Let M be a closed n-manifold of sec ≥ 1 . Then $\pi_1(M)$ contains a cyclic *subgroup of index at most C*(*n*)*.*

1. SYNGE'S THEOREM

Theorem 1.1 (Synge). Let M^n be a closed and orientable manifold with $\sec \geq 1$. *(1) If n is even, then M is either simply connected or not orientable. (2) If n is odd, then M is orientable.*

Lemma 1.2. *Let* M^n *be a closed manifold with* sec ≥ 1 *. Given a minimal geodesic* γ : [0, *l*] \rightarrow M *of unit speed and a normal parallel vector field V* (*t*) *along γ. We consider the variation* Γ*s*(*t*) = $\exp_{\gamma(t)} sV(t)$, where $s \in (-\epsilon, \epsilon)$. Then there is $s \in (-\epsilon, \epsilon)$ such that length(Γ_s) < length(γ).

Proof. By the formula of second variation,

$$
\frac{d^2}{ds^2}\Big|_{s=0}\text{length}(\Gamma_s)=-\int_0^l Rm(V,\gamma',\gamma',V)dt<0.
$$

The result follows. □

Weinstein later rephrased the proof of Synge's theorem so as to establish fixed points of isometries.

Theorem 1.3 (Weinstein). Let M^n be a closed and orientable manifold with sec ≥ 1 . *(1) If n is even, then any orientation preserving isometry φ of M has a fixed point. (2) If n is odd, then any orientation reversing isometry φ of M has a fixed point.*

Proof. (1) Suppose that ϕ does not have any fixed points. We choose $z \in M$ such that

$$
d(z, \phi(z)) = \min_{x \in M} d(x, \phi(x)) =: l > 0.
$$

We join *z* and $\phi(z)$ by a minimal geodesic $\gamma : [0, l] \to M$. First note that $d\phi(\gamma'(0)) = \gamma'(l)$; otherwise, for any $t \in (0, l)$, we have

 $d(\gamma(t), \phi \circ \gamma(t)) < d(\gamma(t), \gamma(l)) + d(\gamma(l), \phi \circ \gamma(t)) = (l - t) + t = l$,

which is a contradiction to the choice of *z*.

Let N_t be the orthogonal complement of $\gamma'(t)$ in $T_{\gamma(t)}M$. Note that we have two linear isometries

$$
d\phi: N_0 \to N_l, \quad P_\gamma: N_0 \to N_l,
$$

where P_γ is the parallel transport along γ . Then

$$
P_{\gamma}^{-1} \circ d\phi : N_0 \to N_0
$$

is an element of $SO(n-1)$, where $n-1$ is odd. Thus it must have an eigenvector ν with eigenvalue 1; in other words, we have a nonzero vector $v \in N_0$ such that $d\phi(v) = P_\gamma(v)$. We parallel transport *v* along γ to obtain a normal parallel vector field $V(t)$ such that $V(0) = v$ and $V(l) = d\phi(v)$.

We consider the variation $\Gamma_s(t) = \exp_{\gamma(t)} sV(t)$, where $s \in (-\epsilon, \epsilon)$. By Lemma [1.2,](#page-0-1) there is some *s* such that Γ_s is shorter than *γ*. Let $y = \Gamma_s(0)$. Note that

$$
\Gamma_s(l) = \exp_{\gamma(l)} sV(l) = \exp_{\phi(z)} s d\phi(\nu) = \phi \circ \exp_z s\nu = \phi(y).
$$

We end in a contradiction to the choice of *z* because

$$
d(y, \phi(y)) \leq \text{length}(\Gamma_s) < \text{length}(\gamma) = d(\phi(z), z).
$$

This completes the proof of (1).

(2) The proof is similar. If *n* is odd and ϕ is orientation reversing, then the same argument in (1) leads to $P_{\gamma}^{-1} \circ d\phi \in O(n-1)$ with determinant −1 and *n* − 1 being even. Hence it has eigenvalue 1 and the remaining proof goes through. $□$

Theorem 1.4 (Berger). Let M^n be a closed manifold with sec ≥ 1 , where n is even. Then any *isometric S*¹ *-action of M has a fixed point.*

Proof. We first assume that *M* is orientable. Let $\theta \in S^1$ such that $\langle \theta \rangle$ is dense in S^1 . Because θ is orientation preserving and *n* is even, by Theorem [1.3,](#page-0-2) θ has a fixed point x_0 . It follows that S^1 -action fixes x_0 .

If M is not orientable. Let \hat{M} be its orientable double cover. We can lift the S^1 -action on M to a S^1 -action on $\hat M$. Then the fixed point on $\hat M$ projects to a fixed point on $M.$ $\hfill \Box$

2. AN EQUIVARIANT VERSION OF SYNGE'S THEOREM

Theorem 2.1 (Rong). Let M be a closed manifold with sec ≥ 1 and circle symmetry. If ϕ is *an isometry of M without fixed points that commutes with S*¹ *-action, then φ preserves a circle orbit.*

We remark that Theorem [2.1](#page-1-1) also holds for ϕ that has fixed points. For the sake of proving Rong's cyclicity theorem, ϕ comes from $\pi_1(M)$ -action on \widetilde{M} , so we can always assume that ϕ does not have fixed points.

For a *G*-action on *M*, below we denote the isotropy subgroup of *G* at *x* by

$$
G_x = \{ g \in G | g \cdot x = x \}.
$$

Lemma 2.2 (Kleiner). Let M be a complete manifold with an isometric G-action. Let γ : [0, l] \rightarrow *M* be a minimal geodesic between $G \cdot \gamma(0)$ and $G \cdot \gamma(l)$. Then $G_{\gamma(t)}$ is constant for $t \in (0, l)$ and is a subgroup of $G_{\gamma(0)} \cap G_{\gamma(l)}$.

Proof. We first prove that $G_{\gamma(t)} \leq G_{\gamma(0)} \cap G_{\gamma(l)}$, where $t \in (0, l)$. Suppose that $g \in G - \{e\}$ fixes *γ*(*t*) but moves *γ*(*l*). Then *g* ∘ *γ* is also a minimal geodesic between *G* · *γ*(0) and *G* · *γ*(*l*). We note that

$$
d(\gamma(0), g \cdot \gamma(l)) \ge l = d(\gamma(0), \gamma(t)) + d(\gamma(t), \gamma(l)) = d(\gamma(0), \gamma(t)) + d(g\gamma(t), g\gamma(l)).
$$

Thus $\gamma|_{[0,t]}$ joining $g \circ \gamma|_{[t,l]}$ is a minimal geodesic between $\gamma(0)$ and $g \cdot \gamma(l)$. We obtain a branching geodesic; a contradiction.

Next, we show that $G_{\gamma(t)}$ is constant for $t \in (0, l)$. Let $0 < t < s < l$. Observe that $\gamma|_{[0, s]}$ is a minimal geodesic between $G \cdot \gamma(0)$ and $G \cdot \gamma(s)$. Then we have $G_{\gamma(t)} \leq G_{\gamma(s)}$. The other direction similarly follows. \Box

Proof of Theorem [2.1.](#page-1-1) We consider the case that *n* is odd, then *M* is orientable and ϕ is orientation preserving. The proof for even dimensions is similar.

The proof is by induction on $n = \dim M$. We assume that the statement holds for odd dimension ≤ *n*−2 and prove the inductive step first. We will visit the base case *n* = 3 afterwards.

Suppose that ϕ does not preserve any circle orbits. We choose $z \in M$ such that

$$
d(z, \phi(S^1 z)) = \min_{x \in M} d(S^1 x, \phi(S^1 x)) = l > 0.
$$

Let γ be a minimal geodesic from *z* to $\phi(S^1z) = S^1(\phi(z))$. We write its end point as $\gamma(l) =$ $\theta \cdot \phi(z)$, where $\theta \in S^1$.

Claim: S^1 $¹$ _{γ(*t*)}, the isotropy subgroup of *S*¹ at *γ*(*t*), is constant for *t* ∈ [0, *l*]. We consider the</sup> curve $(\theta \circ \phi) \circ \gamma$. Similar to the proof of Theorem [1.3,](#page-0-2) we can show that $d(\theta \circ \phi)(\gamma'(0)) = \gamma'(1)$. Otherwise, for any $t \in (0, l)$ we would have

$$
d(\gamma(t),(\theta\circ\phi)\circ\gamma(t)) < d(\gamma(t),\gamma(l)) + d(\gamma(l),(\theta\circ\phi)\circ\gamma(t)) = (l-t) + t = l,
$$

which contradicts to the choice of *z*. This also shows that the curve constructed by joining $\gamma|_{[s,l]}$ and $(\theta \circ \phi) \circ \gamma|_{[0,s]}$ is minimal between $S^1 \cdot \gamma(s)$ and $S^1 \cdot (\phi \circ \gamma(s))$. By Lemma [2.2,](#page-2-0) we have S^1_{γ} ¹/_{γ(*l*)} ≤ *S*¹/_γ *γ*(*s*) . Similarly, one can show the inclusion at *γ*(0). This proves the Claim.

Below, we write $H = S^1$ $\frac{1}{\gamma(t)} = S_z^1$.

Case 1. $H = \{e\}$. Let M_0 be the set of all points where S^1 acts freely. M_0 is open in M . Let

$$
\pi : M \to \overline{M} = M/S^1
$$

be the quotient map and let $\overline{M}_0 = \pi(M_0)$. \overline{M}_0 is open in \overline{M} and carries a Riemannian metric with sec ≥ 1. Because ϕ commutes with S^1 -action, ϕ descends to $\overline{\phi}$ ∈ Isom(\overline{M}). Using the fact that ϕ does not have fixed points, it is direct to check that $\overline{\phi}$ maps to \overline{M}_0 to \overline{M}_0 . Moreover, $\overline{\phi}$ \in Isom(\overline{M}_0) is orientation preserving. By the assumption $H = \{e\}$, $\overline{\gamma} = \pi(\gamma)$ is a minimal geodesic contained in \overline{M}_0 . These set up the conditions to run a variation argument as in the proof of Theorem [1.3,](#page-0-2) which leads to a contradiction to the choice of *z*.

Case 2. H = \mathbb{Z}_h . We write its fixed point set

$$
M^H = \{ x \in M | H \cdot x = x \} = \cup F_j
$$

as a union of components with F_0 containing *z*. Because *H*-action preserves orientation, F_0 is a closed totally geodesic submanifold of even codimension and sec ≥ 1 . Since ϕ commutes with *H*, ϕ permutates the components of M^H . Observe that γ is a minimal geodesic in F_0 , then we see that ϕ preserves F_0 because

$$
\phi(z) = \theta^{-1} \cdot \gamma(l) \in \theta^{-1}(F_0) = F_0.
$$

Now we have a triple (F_0, ϕ, S^1) with the desired properties to complete the induction. Hence ϕ preserves some circle orbit in F_0 . This completes Case 2.

Case 3. H = S^1 . We will construct a suitable variation of *γ*. Let *N_t* be the orthogonal complement of $γ'(t)$ in $T_{γ(t)}M$. Because S^1 -action fixes $γ$, it acts on N_t by differential, written as $d\theta$ for $\theta \in S^1$. We have two linear isometries

$$
P_{\gamma}: N_0 \to N_l, \quad d\phi: N_0 \to N_l.
$$

We note that $d\theta$ and P_γ commutes because both $P_\gamma(d\theta(v))$ and $d\theta(P_\gamma(v))$ are parallel fields along γ with the same initial condition.

Claim: There is a unit vector $v \in N_0$ and $\theta \in S^1$ such that

$$
P_{\gamma}(v) = d(\phi \circ \theta)(v).
$$

Let *S ⁿ*−² be the unit sphere in *^N*0. The map

$$
\psi = d\phi^{-1} \circ P_{\gamma} : S^{n-2} \to S^{n-2}
$$

commutes with S^1 -action on S^{n-2} . If ψ has a fixed point *v*, then this *v* and $\theta = e$ fulfill the property. If ψ does not have fixed points, then we apply the inductive assumption to (S^{n-2}, ψ, S^1) to obtain a circle orbit $S^1 \cdot \nu$ that is preserved by ψ . In other words, we have $v \in S^{n-2}$ and $\theta \in S^1$ such that $\psi(v) = d\theta(v)$. This proves the Claim.

We continue to deal with Case 3. We parallel transport *v* along γ to obtain $V(t)$ and then consider the variation $\Gamma_s(t) = \exp_{\gamma(t)} sV(t)$. By Lemma [1.2,](#page-0-1) there is some *s* such that Γ_s is shorter than γ . Set $y = \Gamma_s(0)$. We note that

$$
\Gamma_s(l) = \exp_{\gamma(l)} sV(l) = \exp_{\phi(z)} s d(\phi \circ \theta)(v) = \phi \circ \theta(\exp_z sv) = \phi \circ \theta(y).
$$

Then we end in a desired contradiction because

$$
d(y, \phi(S^1 y)) \le d(y, \phi \circ \theta(y)) \le \text{length}(\Gamma_s) < \text{length}(\gamma) = d(z, \phi(S^1 z)).
$$

We have completed the inductive step. For the base step $n = 3$. The above argument leads to the situation (S^1, ϕ, S^1) , then it is trivial that ϕ preserves the circle orbit.

For the proof in even dimensions, by Theorems [1.1](#page-0-3) and [1.3,](#page-0-2) *M* is simply connected and *φ* reverses the orientation. All three cases in the above proof go through with some clear modifications. In the base step $n=2$, that is, (S^2, ϕ, S^1), case 1 leads to $M/S^1=[-1,1]$, then $\overline{\phi}$ clearly has a fixed point. Both cases 2 and 3 cannot occur on (S^2, ϕ, S^1)). \Box

3. PROOF OF CYCLICITY

3.1. **Bounding the index of** F_0 -**preserving subgroup.** Below we always write p as a prime number.

Lemma 3.1. Let N be a closed manifold with $\sec \geq 1$. Suppose that N has two commuting *isometric actions: a S*¹ *-action and a free* Γ*-action such that (1)* 〈*S* 1 ,Γ〉 *has a* Z*p-subgroup whose action commutes with* Γ*-action;*

(2) this \mathbb{Z}_p *-action fixes a point* $x_0 \in N$ *.*

Let F_0 *be the component of* $N^{\mathbb{Z}_p}$ *containing* x_0 *, and let* Λ *be the subgroup of* Γ *that preserves* F_0 *. Then* $[\Gamma : \Lambda] \leq b(n)$.

For application of Lemma [3.1](#page-3-2) in the next subsection, *N* will be the universal cover or an intermediate cover of *M*.

The proof of Lemma [3.1](#page-3-2) is rather short but it relies on two big theorems below.

Theorem 3.2 (Smith). Let M be a closed manifold with a \mathbb{Z}_p -action. Then

 $rank H_*(M^{\mathbb{Z}_p}, \mathbb{Z}_p) \leq rank H_*(M, \mathbb{Z}_p).$

Theorem 3.3 (Gromov). Let M^n be a closed manifold with sec ≥ 0 . Then for any field F,

rank $H_*(M, F) \leq b(n)$.

Proof of Lemma [3.1.](#page-3-2) Note that for any $\beta_1, \beta_2 \in \Gamma$,

$$
\beta_1 \Lambda = \beta_2 \Lambda \iff \beta_2^{-1} \beta_1 \in \Lambda \iff \beta_2^{-1} \beta_1 F_0 = F_0 \iff \beta_1 F_0 = \beta_2 F_0.
$$

Because β commutes with \mathbb{Z}_p for all $\beta\in\Gamma$, βF_0 is a component of $N^{\mathbb{Z}_p}.$ Hence we can define an injective map

 $\Gamma/\Lambda \to$ components of $N^{\mathbb{Z}_p}$, $\beta \Lambda \to \beta F_0$.

Together with Theorems [3.2](#page-4-2) and [3.3,](#page-4-3) we conclude

$$
[\Gamma : \Lambda] \leq \#
$$
 components of $N^{\mathbb{Z}_p} \leq \text{rank} H_*(N^{\mathbb{Z}_p}, \mathbb{Z}_p) \leq \text{rank} H_*(N, \mathbb{Z}_p) \leq b(n)$.

3.2. **Induction.**

Theorem 3.4 (Su-Wang). Let M be a closed manifold with a finite $\pi_1(M)$. If \widetilde{M} has an isometric S^1 -action, then $\pi_1(M)$ has a subgroup of index at most $C(n)$ whose action commutes with S^1 *action.*

Theorem 3.5 (Kapovitch-Petrunin-Tuschmann). *There are positive constants* $\epsilon(n)$ *and* $C(n)$ *such that for any closed n-manifold with*

$$
\sec \geq -\epsilon(n), \quad \text{diam}(M) = 1,
$$

its fundamental group $\pi_1(M)$ *must contain a nilpotent subgroup of index at most* $C(n)$ *.*

With the above two theorems, to prove Theorem A, we can always assume that $\pi_1(M)$ is nilpotent and commutes with *S* 1 -action after passing to an intermediate cover of bounded index.

Proof of Theorem A. We prove Theorem A by induction. Suppose that the statement holds in dimension ≤ *n* − 2, where *n* is odd. We shall prove the theorem for dimension *n*. The base step $n = 3$ will be discussed at the end.

Case 1. The S^1 -action on \widetilde{M} has a nontrivial finite isotropy subgroup at some point $x_0 \in \widetilde{M}$. We pick a \mathbb{Z}_p -subgroup in the finite isotropy subgroup, where *p* is a prime. This \mathbb{Z}_p -subgroup satisfies the assumptions of Lemma [3.1](#page-3-2) with $(N, \Gamma) = (\widetilde{M}, \pi_1(M))$. We denote F_0 the component of $\widetilde{M}^{\mathbb{Z}_p}$ containing x_0 and $\Lambda \leq \pi_1(M)$ the subgroup preserving F_0 . Then by Lemma [3.1,](#page-3-2) $[\pi_1(M): \Lambda] \leq b(n)$.

□

 F_0 is a connected and totally geodesic submanifold of even codimension and S^1 symmetry. By inductive assumption, $\pi_1(F_0/\Lambda)$ has a cyclic subgroup \mathbb{Z}_h of index at most $C(n-2)$. The covering map $F_0 \rightarrow F_0/\Lambda$ provides a short exact sequence

$$
0 \to \pi_1(F_0) \to \pi_1(F_0/\Lambda) \stackrel{\psi}{\to} \Lambda \to 0.
$$

Then

$$
[\Lambda : \psi(\mathbb{Z}_h)] \leq [\pi_1(F_0/\Lambda) : \mathbb{Z}_h] \leq C(n-2).
$$

Hence the cyclic subgroup $\psi(\mathbb{Z}_h)$ satisfies

$$
[\pi_1(M):\psi(\mathbb{Z}_h)]\leq [\pi_1(M):\Lambda]\cdot [\Lambda:\psi(\mathbb{Z}_h)]\leq b(n)C(n-2).
$$

This completes the proof of Case 1.

Case 2. Any isotropy subgroup from the S^1 -action on \widetilde{M} is trivial or S^1 . Let $H = \pi_1(M) \cap S^1 = \langle \alpha \rangle$. We consider the intermediate cover

 $(\hat{M}, \hat{\Gamma}, \hat{S}^1) = (\widetilde{M}/H, \pi_1(M)/H, S^1/H).$

We remark that if *H* is trivial, then there is no need for this step and the proof below directly goes through on \widetilde{M} . On \hat{M} , \hat{S}^1 -action and $\hat{\Gamma}$ action commutes. Also, $\hat{S}^1 \cap \hat{\Gamma}$ is trivial. By the nilpotency of $\hat{\Gamma}$, we can choose an element $\hat{\beta} \in Z(\hat{\Gamma})$ of prime order *p*. Applying Theorem [2.1,](#page-1-1) we see that $\hat{\beta}$ preserves a circle orbit $\hat{S}^1\cdot\hat{x_0}$ in \hat{M} . Let $\hat{t_0}$ ∈ \hat{S}^1 such that $\hat{t_0}\hat{\beta}\hat{x_0}=\hat{x_0}.$ Because $\hat{S^1} \cap \hat{\Gamma} = \{e\}$, the element $\hat{t_0} \hat{\beta}$ is non-identity.

It is not difficult to see that $\hat{t}_0\hat{\beta}$ also has order $p.$ By construction, this Z_p-subgroup $\langle\hat{t}_0\hat{\beta}\rangle$ satisfies the assumptions of Lemma [3.1](#page-3-2) with $(N, \Gamma) = (\hat{M}, \hat{\Gamma})$. Under the similar notations

$$
\hat{M}^{\mathbb{Z}_p} = \cup \hat{F}_j, \quad \hat{x_0} \in \hat{F}_0, \quad \hat{\Lambda} = \{ \hat{\gamma} \in \hat{\Gamma} | \hat{\gamma} \hat{F}_0 = \hat{F}_0 \}.
$$

It follows from Lemma [3.1](#page-3-2) that $[\hat{\Gamma} : \hat{\Lambda}] \leq b(n)$.

Then following the same proof in Case 1, we can obtain a dimension reduction on $\hat F_0/\hat \Lambda$ and find a cyclic subgroup $\langle \hat{\gamma} \rangle$ in $\hat{\Gamma}$ of index at most $C(n)$. Let $\gamma \in \pi_1(M)$ be a lift of this $\hat{\gamma} \in \pi_1(M)$ $\hat{\Gamma} = \pi_1(M)/\langle \alpha \rangle$. By Theorem [2.1,](#page-1-1) γ preserves some circle orbit $S^1 x_0$ on \widetilde{M} . Note that this $S^1 x_0$ is a free circle orbit due to the assumption of Case 2. We choose the unique $\theta \in S^1$ such that $\gamma x_0 = \theta x_0$ and define a group homomorphism by

$$
\psi : \langle \alpha, \gamma \rangle \to S^1
$$
 such that $\psi(\alpha) = \alpha$, $\psi(\gamma) = \theta$.

If a word *w* of $\langle \alpha, \gamma \rangle$ is in the kernel of ψ , then $w \cdot x_0 = x_0$ and thus $w = e$. Hence ψ is injective and $\langle \alpha, \gamma \rangle$ must be cyclic. Now we complete the proof of Case 2 by

$$
[\pi_1(M):\langle\alpha,\gamma\rangle]\leq [\pi_1(M)/H:\langle\alpha,\gamma\rangle/H]=[\hat{\Gamma}:\hat{\gamma}]\leq C(n).
$$

For the base step $n = 3$, in either case above, we obtain (F_0, Λ) or $(\hat{F}_0, \hat{\Lambda})$ is (S^1, Λ) . Hence Λ is cyclic. \Box