NOTES ON RONG’S CYCLICITY THEOREM

ABSTRACT. Self-learning notes on Rong’s C(n)-cyclicity theorem about fundamental groups of
closed manifolds with positive sectional curvature and S! symmetry.
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Theorem A (Rong). Let M be a closed n-manifold of sec = 1. Suppose that its universal cover
M admits an isometric S* -action, then 1 (M) contains a cyclic subgroup of index at most C(n).

Rong’s theorem in its original form also requires that S!-action commutes with 7;-action.
With a later result by Su-Wang (see Theorem 3.4), this assumption can be dropped because
one can always find a subgroup of 7; (M) with bounded index that commutes with S!.

It is conjectured by Rong that the circle symmetry condition in Theorem A can be dropped.

Conjecture 0.1 (Rong). Let M be a closed n-manifold of sec = 1. Then m,(M) contains a cyclic
subgroup of index at most C(n).

1. SYNGE’S THEOREM

Theorem 1.1 (Synge). Let M" be a closed and orientable manifold with sec = 1.
(1) If n is even, then M is either simply connected or not orientable.
(2) If n is odd, then M is orientable.

Lemma 1.2. Let M" be a closed manifold with sec = 1. Given a minimal geodesicy : [0,1] — M
of unit speed and a normal parallel vector field V (t) alongy. We consider the variationT's(t) =
exp, ) SV (1), where s € (—¢,¢). Then there is s € (—€,€) such thatlength(I's) < length(y).

Proof. By the formula of second variation,
2

ds?ls=0

The result follows. U

l
length(T'y) = —/ Rm(V,y,y,V)dt <o.
0

Weinstein later rephrased the proof of Synge’s theorem so as to establish fixed points of
isometries.

Theorem 1.3 (Weinstein). Let M" be a closed and orientable manifold with sec = 1.
(1) If n is even, then any orientation preserving isometry ¢ of M has a fixed point.

(2) If n is odd, then any orientation reversing isometry ¢ of M has a fixed point.
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Proof. (1) Suppose that ¢ does not have any fixed points. We choose z € M such that
d(z,¢(z)) =mind(x,¢(x)) =:1>0.
xeM

We join z and ¢(z) by a minimal geodesic y : [0,]] — M. First note that d¢(y'(0)) = y'(D);
otherwise, for any ¢ € (0, /), we have

d(y(®),poy®) <dy®),yD)+dlyD),poy()=(1-D+1t=1,

which is a contradiction to the choice of z.
Let N; be the orthogonal complement of y'(f) in Ty;)M. Note that we have two linear
isometries
dd:No— Nj, Py:No— Ny,
where P is the parallel transport along y. Then

Pt odd: No— No

is an element of SO(n — 1), where n—1 is odd. Thus it must have an eigenvector v with eigen-
value 1; in other words, we have a nonzero vector v € Ny such that d¢(v) = Py(v). We par-
allel transport v along y to obtain a normal parallel vector field V(¢) such that V(0) = v and
V() =d¢p(v).

We consider the variation I'(f) = eXPy(p) sV (1), where s € (—€,€). By Lemma 1.2, there is
some s such that I'; is shorter than y. Let y = I';(0). Note that

I's(h)= exp, () sV() = eXPy(z) sdp(v) =poexp,sv=ad(y).
We end in a contradiction to the choice of z because
d(y,¢(y)) <length(I'y) <length(y) = d(¢(2), 2).

This completes the proof of (1).

(2) The proof is similar. If n is odd and ¢ is orientation reversing, then the same argument
in (1) leads to P, Lod¢p € O(n—1) with determinant —1 and 7 — 1 being even. Hence it has
eigenvalue 1 and the remaining proof goes through. U

Theorem 1.4 (Berger). Let M" be a closed manifold with sec = 1, where n is even. Then any
isometric S'-action of M has a fixed point.

Proof. We first assume that M is orientable. Let 0 € S 1 such that (0) is dense in S!. Because 0
is orientation preserving and 7 is even, by Theorem 1.3, 0 has a fixed point x;. It follows that
S!-action fixes xy.

If M is not orientable. Let M be its orientable double cover. We can lift the S'-action on M
to a S'-action on M. Then the fixed point on M projects to a fixed point on M. U

2. AN EQUIVARIANT VERSION OF SYNGE’S THEOREM

Theorem 2.1 (Rong). Let M be a closed manifold with sec = 1 and circle symmetry. If ¢ is
an isometry of M without fixed points that commutes with S' -action, then ¢ preserves a circle
orbit.

We remark that Theorem 2.1 also holds for ¢ that has fixed points. For the sake of proving
Rong’s cyclicity theorem, ¢ comes from m; (M)-action on M, so we can always assume that ¢
does not have fixed points.
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For a G-action on M, below we denote the isotropy subgroup of G at x by
Gy=1g€Glg-x=x}.

Lemma 2.2 (Kleiner). Let M be a complete manifold with an isometric G-action. Lety : [0, 1] —
M be a minimal geodesic between G -y(0) and G-y(l). Then Gy is constant for t € (0, 1) and is
a subgroup of Gy ) N Gy ().

Proof. We first prove that Gy ;) < Gy ) N Gy, where t € (0,1). Suppose that g € G — {e} fixes
Y () but moves y(l). Then go vy is also a minimal geodesic between G-y(0) and G-y(l). We
note that

d(y(0),g-y()) =1=d(y(0),y(r)+d(y(®),y) =d(y(0),y(®) +d(gy(®),gy)).

Thus ¥, joining g oyl is a minimal geodesic between y(0) and g-y(l). We obtain a
branching geodesic; a contradiction.

Next, we show that G,y is constant for ¢ € (0,). Let 0 < t < s < . Observe that y|j 5 is a
minimal geodesic between G-y(0) and G-y (s). Then we have Gy < Gy(5). The other direction
similarly follows. U

Proof of Theorem 2.1. We consider the case that n is odd, then M is orientable and ¢ is orien-
tation preserving. The proof for even dimensions is similar.
The proof is by induction on n = dim M. We assume that the statement holds for odd di-
mension < n—2 and prove the inductive step first. We will visit the base case n = 3 afterwards.
Suppose that ¢ does not preserve any circle orbits. We choose z € M such that

d(z,(S'2) = mind(S'x,p(S'x)) = 1> 0.
xeM

Let vy be a minimal geodesic from z to (/)(Slz) = Sl(d)(z)). We write its end point as y(l) =
0-¢(z), where 0 € S*.

Claim: S}Ym, the isotropy subgroup of S! at y(), is constant for ¢ € [0, ]]. We consider the
curve (6 o ¢p) oy. Similar to the proof of Theorem 1.3, we can show that d (6 o ¢)(y'(0)) = y'(1).

Otherwise, for any ¢ € (0, ) we would have
d(y(t),@oc)oy(r) <d(y),yD)+dyD),@cp)oy(®)=(1-0+1t=1,

which contradicts to the choice of z. This also shows that the curve constructed by joining
Ylis, and (6 o ) oyl(o,¢ is minimal between S -y (s) and S - (¢ o y(s)). By Lemma 2.2, we have

S;( n= 871,( Y Similarly, one can show the inclusion at y(0). This proves the Claim.

Below, we write H = S}, = S.
Case 1. H = {e}. Let M, be the set of all points where S Lacts freely. My is openin M. Let
m:M—M=M]/S'

be the quotient map and let Mo = w(My). M is open in M and carries a Riemannian metric
with sec = 1. Because ¢ commutes with S!-action, ¢ descends to ¢ € Isom(M). Using the fact
that ¢ does not have fixed points, it is direct to check that ¢ maps to M, to M. Moreover,
¢ € Isom(M)) is orientation preserving. By the assumption H = {e}, ¥ = n(y) is a minimal
geodesic contained in Mj. These set up the conditions to run a variation argument as in the

proof of Theorem 1.3, which leads to a contradiction to the choice of z.
Case 2. H = Zj,. We write its fixed point set

M" ={xe M|H-x=x} = UF;
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as a union of components with Fy containing z. Because H-action preserves orientation, F
is a closed totally geodesic submanifold of even codimension and sec = 1. Since ¢ commutes
with H, ¢ permutates the components of M. Observe that y is a minimal geodesic in F,
then we see that ¢ preserves Fy because

P(2)=0"1-y(Deb (R = F.

Now we have a triple (Fy, ¢, S 1y with the desired properties to complete the induction. Hence
¢ preserves some circle orbit in Fy. This completes Case 2.

Case 3. H = S'. We will construct a suitable variation of y. Let N; be the orthogonal com-
plement of y/(¢) in Tyy M. Because S'-action fixes vy, it acts on N; by differential, written as
d0 for 0 € S'. We have two linear isometries

PY:N0—>N1, d(/):No—>Nl.
We note that d6 and P, commutes because both P, (d60(v)) and d6(Py(v)) are parallel fields

along y with the same initial condition.
Claim: There is a unit vector v € Ny and 6 € S! such that

Py (v) = d(po0)(v).
Let $"~2 be the unit sphere in Ny. The map
w — d(p_l OPY . Sn—2 s Sn—z

commutes with S'-action on S"72. If v has a fixed point v, then this v and 6 = e fulfill
the property. If v does not have fixed points, then we apply the inductive assumption to
(8"2,1,S') to obtain a circle orbit S! - v that is preserved by . In other words, we have
ve S" 2 and 6 € S! such that ¢ (v) = df(v). This proves the Claim.

We continue to deal with Case 3. We parallel transport v along y to obtain V(#) and then
consider the variation I's(f) = exp,; sV (7). By Lemma 1.2, there is some s such that I's is
shorter than y. Set y =I'¢(0). We note that

Ls(D) = expy ) SV (1) = expy ) sd(po0)(v) = pob(exp, sv) = pob(y).
Then we end in a desired contradiction because
d(y,¢(S'y)) < d(y,po0(y)) <length(T'y) < length(y) = d(z,p(S' 2)).

We have completed the inductive step. For the base step n = 3. The above argument leads
to the situation (S!, ¢, S!), then it is trivial that ¢» preserves the circle orbit.

For the proof in even dimensions, by Theorems 1.1 and 1.3, M is simply connected and
¢ reverses the orientation. All three cases in the above proof go through with some clear
modifications. In the base step n = 2, that is, (S?,¢, S), case 1 leads to M/S' = [-1,1], then ¢
clearly has a fixed point. Both cases 2 and 3 cannot occur on (52, ¢, S1). U

3. PROOF OF CYCLICITY

3.1. Bounding the index of Fj-preserving subgroup. Below we always write p as a prime
number.

Lemma 3.1. Let N be a closed manifold with sec = 1. Suppose that N has two commuting
isometric actions: a S*-action and a free T -action such that
(1)(SL,T) hasaZ p-subgroup whose action commutes with T -action;
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(2) this 7, -action fixes a point xo € N.
Let Fy be the component of N’» containing xo, and let A be the subgroup of T that preserves Fy.
Then [I': Al < b(n).

For application of Lemma 3.1 in the next subsection, N will be the universal cover or an
intermediate cover of M.
The proof of Lemma 3.1 is rather short but it relies on two big theorems below.

Theorem 3.2 (Smith). Let M be a closed manifold with a Z ,-action. Then
rankH, (M??,Z ) < rankH,.(M, Z ).
Theorem 3.3 (Gromov). Let M" be a closed manifold with sec = 0. Then for any field F,
rankH, (M, F) < b(n).
Proof of Lemma 3.1. Note that for any 1, 2 €T,
BiA=PoA < B fre N < B5' f1Fy=Fy < 1 Fo = P2F.

Because f commutes with Z,, for all € I', BF is a component of N Zp. Hence we can define
an injective map
I'/A — components of N2?, BA— BF,.

Together with Theorems 3.2 and 3.3, we conclude

[T : A] <# components of N%r < rankH, (N?», Zp) <rankH, (N, Zp,) < b(n).

3.2. Induction.

Theorem 3.4 (Su-Wang). Let M be a closed manifold with a finite £, (M). If M has an isometric
S'-action, then m1(M) has a subgroup of index at most C(n) whose action commutes with Sl-
action.

Theorem 3.5 (Kapovitch-Petrunin-Tuschmann). There are positive constants €(n) and C(n)
such that for any closed n-manifold with

sec = —€(n), diam(M) =1,
its fundamental group m, (M) must contain a nilpotent subgroup of index at most C(n).

With the above two theorems, to prove Theorem A, we can always assume that 7; (M) is
nilpotent and commutes with S!-action after passing to an intermediate cover of bounded
index.

Proof of Theorem A. We prove Theorem A by induction. Suppose that the statement holds in
dimension < n — 2, where n is odd. We shall prove the theorem for dimension n. The base
step n = 3 will be discussed at the end.

Case 1. The S'-action on M has a nontrivial finite isotropy subgroup at some point xo € M.

We pick a Z,-subgroup in the finite isotropy subgroup, where p is a prime. This Z,-subgroup
satisfies the assumptions of Lemma 3.1 with (\V,I') = (M, ,m1(M)). We denote Fy the compo-
nent of MZ» containing x, and A < 7;(M) the subgroup preserving Fy. Then by Lemma 3.1,
[1(M) : Al < b(n).



6 NOTES ON RONG’S CYCLICITY THEOREM

Fy is a connected and totally geodesic submanifold of even codimension and S! symmetry.
By inductive assumption, 7;(Fy/A) has a cyclic subgroup Zj, of index at most C(n —2). The
covering map Fy — Fy/ A provides a short exact sequence

0 — 11 (Fo) — 71 (Fo/ A) % A — 0.
Then
Ay (Zp)] < [m(Fo/A): Zp] < C(n-2).
Hence the cyclic subgroup y(Z},) satisfies
(71 (M) @ (Zp)] < [ (M) : Al - [A:yp(Zp)] < b(n)C(n-2).

This completes the proof of Case 1. .
Case 2. Any isotropy subgroup from the S -action on M is trivial or S*.
Let H =, (M) N S' = (a). We consider the intermediate cover

(M, 1,81 = (M/H, m(M)/H,S'/H).

We remark that if H is trivial, then there is no need for this step and the proof below directly
goes through on M. On M, Sl-action and [ action commutes. Also, S! NT" is trivial. By the
nilpotency of I', we can choose an element ,6 e Z(I) of prlme order p. Applylng Theorem 2.1,
we see that ,6 preserves a circle orbit St. KXo in M. Let fy € S! such that to,BxO = Xy. Because
SlAf = {e}, the element £, ,6 is non-identity.

It is not difficult to see that #y also has order p. By construction, this Z p-subgroup (o)
satisfies the assumptions of Lemma 3.1 with (V,T') = (M, I'). Under the similar notations

sz = Uﬁj, )60 € ﬁo, [\ = {}A’ € f|)7ﬁ0 = ﬁo}

It follows from Lemma 3.1 that [I": A] < b(n).

Then following the same proof Ain Case 1, we can obtain a dimension reduction on ﬁo/ A
and find a cyclic subgroup (y) in I' of index at most C(n). Let y € m; (M) be a lift of this y €
['=m(M)/{a). By Theorem 2.1, y preserves some circle orbit Slx, on M. Note that this S x,

is a free circle orbit due to the assumption of Case 2. We choose the unique 6 € S! such that
Y X0 = 0xp and define a group homomorphism by

viia,y) — S' such that via)=a,y(y) =

If aword w of {(a,y) is in the kernel of y, then w - xy = xo and thus w = e. Hence v is injective
and (a,y) must be cyclic. Now we complete the proof of Case 2 by

[, (M) : {a,y)] < [m(M)/H : {a,y)/ H] = [[": 7] < C(n).

For the base step n = 3, in either case above, we obtain (Fy, A) or (Fo, A) is (S, A). Hence A
is cyclic. U
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