NOTES ON RONG'S CYCLICITY THEOREM

ABSTRACT. Self-learning notes on Rong's C(n)-cyclicity theorem about fundamental groups of closed manifolds with positive sectional curvature and S^1 symmetry.

CONTENTS

1.	Synge's theorem	1
2.	An equivariant version of Synge's theorem	2
3.	Proof of cyclicity	4
3.1.	Bounding the index of F_0 -preserving subgroup	4
3.2.	Induction	5

Theorem A (Rong). Let M be a closed n-manifold of sec ≥ 1 . Suppose that its universal cover \widetilde{M} admits an isometric S^1 -action, then $\pi_1(M)$ contains a cyclic subgroup of index at most C(n).

Rong's theorem in its original form also requires that S^1 -action commutes with π_1 -action. With a later result by Su-Wang (see Theorem 3.4), this assumption can be dropped because one can always find a subgroup of $\pi_1(M)$ with bounded index that commutes with S^1 .

It is conjectured by Rong that the circle symmetry condition in Theorem A can be dropped.

Conjecture 0.1 (Rong). Let *M* be a closed *n*-manifold of sec ≥ 1 . Then $\pi_1(M)$ contains a cyclic subgroup of index at most C(n).

1. Synge's theorem

Theorem 1.1 (Synge). Let M^n be a closed and orientable manifold with $\sec \ge 1$. (1) If n is even, then M is either simply connected or not orientable. (2) If n is odd, then M is orientable.

Lemma 1.2. Let M^n be a closed manifold with $\sec \ge 1$. Given a minimal geodesic $\gamma : [0, l] \to M$ of unit speed and a normal parallel vector field V(t) along γ . We consider the variation $\Gamma_s(t) = \exp_{\gamma(t)} sV(t)$, where $s \in (-\epsilon, \epsilon)$. Then there is $s \in (-\epsilon, \epsilon)$ such that $\operatorname{length}(\Gamma_s) < \operatorname{length}(\gamma)$.

Proof. By the formula of second variation,

$$\frac{d^2}{ds^2}\Big|_{s=0} \operatorname{length}(\Gamma_s) = -\int_0^t Rm(V,\gamma',\gamma',V)dt < 0.$$

The result follows.

. . . .

Weinstein later rephrased the proof of Synge's theorem so as to establish fixed points of isometries.

Theorem 1.3 (Weinstein). Let M^n be a closed and orientable manifold with $\sec \ge 1$. (1) If n is even, then any orientation preserving isometry ϕ of M has a fixed point. (2) If n is odd, then any orientation reversing isometry ϕ of M has a fixed point. *Proof.* (1) Suppose that ϕ does not have any fixed points. We choose $z \in M$ such that

$$d(z,\phi(z)) = \min_{x \in M} d(x,\phi(x)) =: l > 0.$$

We join *z* and $\phi(z)$ by a minimal geodesic $\gamma : [0, l] \to M$. First note that $d\phi(\gamma'(0)) = \gamma'(l)$; otherwise, for any $t \in (0, l)$, we have

 $d(\gamma(t), \phi \circ \gamma(t)) < d(\gamma(t), \gamma(l)) + d(\gamma(l), \phi \circ \gamma(t)) = (l-t) + t = l,$

which is a contradiction to the choice of *z*.

Let N_t be the orthogonal complement of $\gamma'(t)$ in $T_{\gamma(t)}M$. Note that we have two linear isometries

$$d\phi: N_0 \to N_l, \quad P_\gamma: N_0 \to N_l,$$

where P_{γ} is the parallel transport along γ . Then

$$P_{\gamma}^{-1} \circ d\phi : N_0 \to N_0$$

is an element of SO(n-1), where n-1 is odd. Thus it must have an eigenvector v with eigenvalue 1; in other words, we have a nonzero vector $v \in N_0$ such that $d\phi(v) = P_{\gamma}(v)$. We parallel transport v along γ to obtain a normal parallel vector field V(t) such that V(0) = v and $V(l) = d\phi(v)$.

We consider the variation $\Gamma_s(t) = \exp_{\gamma(t)} sV(t)$, where $s \in (-\epsilon, \epsilon)$. By Lemma 1.2, there is some *s* such that Γ_s is shorter than γ . Let $y = \Gamma_s(0)$. Note that

$$\Gamma_{s}(l) = \exp_{\gamma(l)} sV(l) = \exp_{\phi(z)} sd\phi(v) = \phi \circ \exp_{z} sv = \phi(y).$$

We end in a contradiction to the choice of z because

$$d(y,\phi(y)) \le \text{length}(\Gamma_s) < \text{length}(\gamma) = d(\phi(z), z).$$

This completes the proof of (1).

(2) The proof is similar. If *n* is odd and ϕ is orientation reversing, then the same argument in (1) leads to $P_{\gamma}^{-1} \circ d\phi \in O(n-1)$ with determinant -1 and n-1 being even. Hence it has eigenvalue 1 and the remaining proof goes through.

Theorem 1.4 (Berger). Let M^n be a closed manifold with $\sec \ge 1$, where *n* is even. Then any isometric S^1 -action of *M* has a fixed point.

Proof. We first assume that *M* is orientable. Let $\theta \in S^1$ such that $\langle \theta \rangle$ is dense in S^1 . Because θ is orientation preserving and *n* is even, by Theorem 1.3, θ has a fixed point x_0 . It follows that S^1 -action fixes x_0 .

If *M* is not orientable. Let \hat{M} be its orientable double cover. We can lift the S^1 -action on *M* to a S^1 -action on \hat{M} . Then the fixed point on \hat{M} projects to a fixed point on *M*.

2. AN EQUIVARIANT VERSION OF SYNGE'S THEOREM

Theorem 2.1 (Rong). Let M be a closed manifold with $\sec \ge 1$ and circle symmetry. If ϕ is an isometry of M without fixed points that commutes with S¹-action, then ϕ preserves a circle orbit.

We remark that Theorem 2.1 also holds for ϕ that has fixed points. For the sake of proving Rong's cyclicity theorem, ϕ comes from $\pi_1(M)$ -action on \widetilde{M} , so we can always assume that ϕ does not have fixed points.

For a *G*-action on *M*, below we denote the isotropy subgroup of *G* at *x* by

$$G_x = \{g \in G | g \cdot x = x\}.$$

Lemma 2.2 (Kleiner). Let M be a complete manifold with an isometric G-action. Let $\gamma : [0, l] \to M$ be a minimal geodesic between $G \cdot \gamma(0)$ and $G \cdot \gamma(l)$. Then $G_{\gamma(t)}$ is constant for $t \in (0, l)$ and is a subgroup of $G_{\gamma(0)} \cap G_{\gamma(l)}$.

Proof. We first prove that $G_{\gamma(t)} \leq G_{\gamma(0)} \cap G_{\gamma(l)}$, where $t \in (0, l)$. Suppose that $g \in G - \{e\}$ fixes $\gamma(t)$ but moves $\gamma(l)$. Then $g \circ \gamma$ is also a minimal geodesic between $G \cdot \gamma(0)$ and $G \cdot \gamma(l)$. We note that

$$d(\gamma(0), g \cdot \gamma(l)) \ge l = d(\gamma(0), \gamma(t)) + d(\gamma(t), \gamma(l)) = d(\gamma(0), \gamma(t)) + d(g\gamma(t), g\gamma(l))$$

Thus $\gamma|_{[0,t]}$ joining $g \circ \gamma|_{[t,l]}$ is a minimal geodesic between $\gamma(0)$ and $g \cdot \gamma(l)$. We obtain a branching geodesic; a contradiction.

Next, we show that $G_{\gamma(t)}$ is constant for $t \in (0, l)$. Let 0 < t < s < l. Observe that $\gamma|_{[0,s]}$ is a minimal geodesic between $G \cdot \gamma(0)$ and $G \cdot \gamma(s)$. Then we have $G_{\gamma(t)} \leq G_{\gamma(s)}$. The other direction similarly follows.

Proof of Theorem 2.1. We consider the case that *n* is odd, then *M* is orientable and ϕ is orientation preserving. The proof for even dimensions is similar.

The proof is by induction on $n = \dim M$. We assume that the statement holds for odd dimension $\leq n-2$ and prove the inductive step first. We will visit the base case n = 3 afterwards.

Suppose that ϕ does not preserve any circle orbits. We choose $z \in M$ such that

$$d(z,\phi(S^{1}z)) = \min_{x \in M} d(S^{1}x,\phi(S^{1}x)) = l > 0.$$

Let γ be a minimal geodesic from z to $\phi(S^1 z) = S^1(\phi(z))$. We write its end point as $\gamma(l) = \theta \cdot \phi(z)$, where $\theta \in S^1$.

Claim: $S^1_{\gamma(t)}$, the isotropy subgroup of S^1 at $\gamma(t)$, is constant for $t \in [0, l]$. We consider the curve $(\theta \circ \phi) \circ \gamma$. Similar to the proof of Theorem 1.3, we can show that $d(\theta \circ \phi)(\gamma'(0)) = \gamma'(1)$. Otherwise, for any $t \in (0, l)$ we would have

$$d(\gamma(t), (\theta \circ \phi) \circ \gamma(t)) < d(\gamma(t), \gamma(l)) + d(\gamma(l), (\theta \circ \phi) \circ \gamma(t)) = (l-t) + t = l,$$

which contradicts to the choice of *z*. This also shows that the curve constructed by joining $\gamma|_{[s,l]}$ and $(\theta \circ \phi) \circ \gamma|_{[0,s]}$ is minimal between $S^1 \cdot \gamma(s)$ and $S^1 \cdot (\phi \circ \gamma(s))$. By Lemma 2.2, we have $S^1_{\gamma(l)} \leq S^1_{\gamma(s)}$. Similarly, one can show the inclusion at $\gamma(0)$. This proves the Claim.

Below, we write $H = S_{\gamma(t)}^1 = S_z^1$.

Case 1. $H = \{e\}$. Let M_0 be the set of all points where S^1 acts freely. M_0 is open in M. Let

$$\pi: M \to \overline{M} = M/S^1$$

be the quotient map and let $\overline{M}_0 = \pi(M_0)$. \overline{M}_0 is open in \overline{M} and carries a Riemannian metric with sec ≥ 1 . Because ϕ commutes with S^1 -action, ϕ descends to $\overline{\phi} \in \text{Isom}(\overline{M})$. Using the fact that ϕ does not have fixed points, it is direct to check that $\overline{\phi}$ maps to \overline{M}_0 to \overline{M}_0 . Moreover, $\overline{\phi} \in \text{Isom}(\overline{M}_0)$ is orientation preserving. By the assumption $H = \{e\}, \overline{\gamma} = \pi(\gamma)$ is a minimal geodesic contained in \overline{M}_0 . These set up the conditions to run a variation argument as in the proof of Theorem 1.3, which leads to a contradiction to the choice of *z*.

Case 2. $H = \mathbb{Z}_h$. We write its fixed point set

$$M^H = \{x \in M | H \cdot x = x\} = \bigcup F_i$$

as a union of components with F_0 containing z. Because H-action preserves orientation, F_0 is a closed totally geodesic submanifold of even codimension and sec ≥ 1 . Since ϕ commutes with H, ϕ permutates the components of M^H . Observe that γ is a minimal geodesic in F_0 , then we see that ϕ preserves F_0 because

$$\phi(z) = \theta^{-1} \cdot \gamma(l) \in \theta^{-1}(F_0) = F_0.$$

Now we have a triple (F_0, ϕ, S^1) with the desired properties to complete the induction. Hence ϕ preserves some circle orbit in F_0 . This completes Case 2.

Case 3. $H = S^1$. We will construct a suitable variation of γ . Let N_t be the orthogonal complement of $\gamma'(t)$ in $T_{\gamma(t)}M$. Because S^1 -action fixes γ , it acts on N_t by differential, written as $d\theta$ for $\theta \in S^1$. We have two linear isometries

$$P_{\gamma}: N_0 \to N_l, \quad d\phi: N_0 \to N_l.$$

We note that $d\theta$ and P_{γ} commutes because both $P_{\gamma}(d\theta(v))$ and $d\theta(P_{\gamma}(v))$ are parallel fields along γ with the same initial condition.

Claim: There is a unit vector $v \in N_0$ and $\theta \in S^1$ such that

$$P_{\gamma}(v) = d(\phi \circ \theta)(v).$$

Let S^{n-2} be the unit sphere in N_0 . The map

$$\psi = d\phi^{-1} \circ P_{\gamma} : S^{n-2} \to S^{n-2}$$

commutes with S^1 -action on S^{n-2} . If ψ has a fixed point v, then this v and $\theta = e$ fulfill the property. If ψ does not have fixed points, then we apply the inductive assumption to (S^{n-2}, ψ, S^1) to obtain a circle orbit $S^1 \cdot v$ that is preserved by ψ . In other words, we have $v \in S^{n-2}$ and $\theta \in S^1$ such that $\psi(v) = d\theta(v)$. This proves the Claim.

We continue to deal with Case 3. We parallel transport v along γ to obtain V(t) and then consider the variation $\Gamma_s(t) = \exp_{\gamma(t)} sV(t)$. By Lemma 1.2, there is some s such that Γ_s is shorter than γ . Set $y = \Gamma_s(0)$. We note that

$$\Gamma_{s}(l) = \exp_{\gamma(l)} sV(l) = \exp_{\phi(z)} sd(\phi \circ \theta)(v) = \phi \circ \theta(\exp_{z} sv) = \phi \circ \theta(y).$$

Then we end in a desired contradiction because

$$d(y,\phi(S^{1}y)) \leq d(y,\phi \circ \theta(y)) \leq \text{length}(\Gamma_{s}) < \text{length}(\gamma) = d(z,\phi(S^{1}z)).$$

We have completed the inductive step. For the base step n = 3. The above argument leads to the situation (S^1, ϕ, S^1) , then it is trivial that ϕ preserves the circle orbit.

For the proof in even dimensions, by Theorems 1.1 and 1.3, *M* is simply connected and ϕ reverses the orientation. All three cases in the above proof go through with some clear modifications. In the base step n = 2, that is, (S^2, ϕ, S^1) , case 1 leads to $M/S^1 = [-1, 1]$, then $\overline{\phi}$ clearly has a fixed point. Both cases 2 and 3 cannot occur on (S^2, ϕ, S^1) .

3. PROOF OF CYCLICITY

3.1. Bounding the index of F_0 -preserving subgroup. Below we always write p as a prime number.

Lemma 3.1. Let N be a closed manifold with $\sec \ge 1$. Suppose that N has two commuting isometric actions: a S^1 -action and a free Γ -action such that (1) $\langle S^1, \Gamma \rangle$ has a \mathbb{Z}_p -subgroup whose action commutes with Γ -action; (2) this \mathbb{Z}_p -action fixes a point $x_0 \in N$.

Let F_0 be the component of $N^{\mathbb{Z}_p}$ containing x_0 , and let Λ be the subgroup of Γ that preserves F_0 . Then $[\Gamma : \Lambda] \leq b(n)$.

For application of Lemma 3.1 in the next subsection, N will be the universal cover or an intermediate cover of M.

The proof of Lemma 3.1 is rather short but it relies on two big theorems below.

Theorem 3.2 (Smith). Let *M* be a closed manifold with a \mathbb{Z}_p -action. Then

 $\operatorname{rank} H_*(M^{\mathbb{Z}_p}, \mathbb{Z}_p) \leq \operatorname{rank} H_*(M, \mathbb{Z}_p).$

Theorem 3.3 (Gromov). Let M^n be a closed manifold with $\sec \ge 0$. Then for any field F,

 $\operatorname{rank} H_*(M, F) \leq b(n).$

Proof of Lemma 3.1. Note that for any $\beta_1, \beta_2 \in \Gamma$,

$$\beta_1 \Lambda = \beta_2 \Lambda \iff \beta_2^{-1} \beta_1 \in \Lambda \iff \beta_2^{-1} \beta_1 F_0 = F_0 \iff \beta_1 F_0 = \beta_2 F_0.$$

Because β commutes with \mathbb{Z}_p for all $\beta \in \Gamma$, βF_0 is a component of $N^{\mathbb{Z}_p}$. Hence we can define an injective map

 $\Gamma/\Lambda \to \text{ components of } N^{\mathbb{Z}_p}, \quad \beta\Lambda \mapsto \beta F_0.$

Together with Theorems 3.2 and 3.3, we conclude

$$[\Gamma : \Lambda] \le \# \text{ components of } N^{\mathbb{Z}_p} \le \operatorname{rank} H_*(N^{\mathbb{Z}_p}, \mathbb{Z}_p) \le \operatorname{rank} H_*(N, \mathbb{Z}_p) \le b(n).$$

3.2. Induction.

Theorem 3.4 (Su-Wang). Let M be a closed manifold with a finite $\pi_1(M)$. If \widetilde{M} has an isometric S^1 -action, then $\pi_1(M)$ has a subgroup of index at most C(n) whose action commutes with S^1 -action.

Theorem 3.5 (Kapovitch-Petrunin-Tuschmann). *There are positive constants* $\epsilon(n)$ *and* C(n) *such that for any closed n-manifold with*

$$\sec \geq -\epsilon(n), \quad \operatorname{diam}(M) = 1,$$

its fundamental group $\pi_1(M)$ must contain a nilpotent subgroup of index at most C(n).

With the above two theorems, to prove Theorem A, we can always assume that $\pi_1(M)$ is nilpotent and commutes with S^1 -action after passing to an intermediate cover of bounded index.

Proof of Theorem A. We prove Theorem A by induction. Suppose that the statement holds in dimension $\leq n - 2$, where *n* is odd. We shall prove the theorem for dimension *n*. The base step n = 3 will be discussed at the end.

Case 1. The S^1 *-action on* \widetilde{M} *has a nontrivial finite isotropy subgroup at some point* $x_0 \in \widetilde{M}$. We pick a \mathbb{Z}_p -subgroup in the finite isotropy subgroup, where p is a prime. This \mathbb{Z}_p -subgroup satisfies the assumptions of Lemma 3.1 with $(N, \Gamma) = (\widetilde{M}, \pi_1(M))$. We denote F_0 the component of $\widetilde{M}^{\mathbb{Z}_p}$ containing x_0 and $\Lambda \leq \pi_1(M)$ the subgroup preserving F_0 . Then by Lemma 3.1, $[\pi_1(M):\Lambda] \leq b(n)$.

 F_0 is a connected and totally geodesic submanifold of even codimension and S^1 symmetry. By inductive assumption, $\pi_1(F_0/\Lambda)$ has a cyclic subgroup \mathbb{Z}_h of index at most C(n-2). The covering map $F_0 \to F_0/\Lambda$ provides a short exact sequence

$$0 \to \pi_1(F_0) \to \pi_1(F_0/\Lambda) \xrightarrow{\psi} \Lambda \to 0.$$

Then

$$[\Lambda:\psi(\mathbb{Z}_h)] \le [\pi_1(F_0/\Lambda):\mathbb{Z}_h] \le C(n-2).$$

Hence the cyclic subgroup $\psi(\mathbb{Z}_h)$ satisfies

$$[\pi_1(M):\psi(\mathbb{Z}_h)] \le [\pi_1(M):\Lambda] \cdot [\Lambda:\psi(\mathbb{Z}_h)] \le b(n)C(n-2).$$

This completes the proof of Case 1.

Case 2. Any isotropy subgroup from the S^1 -action on \widetilde{M} is trivial or S^1 . Let $H = \pi_1(M) \cap S^1 = \langle \alpha \rangle$. We consider the intermediate cover

 $(\widehat{M},\widehat{\Gamma},\widehat{S^1}) = (\widetilde{M}/H,\pi_1(M)/H,S^1/H).$

We remark that if *H* is trivial, then there is no need for this step and the proof below directly goes through on \widetilde{M} . On \hat{M} , \hat{S}^1 -action and $\hat{\Gamma}$ action commutes. Also, $\hat{S}^1 \cap \hat{\Gamma}$ is trivial. By the nilpotency of $\hat{\Gamma}$, we can choose an element $\hat{\beta} \in Z(\hat{\Gamma})$ of prime order *p*. Applying Theorem 2.1, we see that $\hat{\beta}$ preserves a circle orbit $\hat{S}^1 \cdot \hat{x}_0$ in \hat{M} . Let $\hat{t}_0 \in \hat{S}^1$ such that $\hat{t}_0 \hat{\beta} \hat{x}_0 = \hat{x}_0$. Because $\hat{S}^1 \cap \hat{\Gamma} = \{e\}$, the element $\hat{t}_0 \hat{\beta}$ is non-identity.

It is not difficult to see that $\hat{t}_0\hat{\beta}$ also has order p. By construction, this \mathbb{Z}_p -subgroup $\langle \hat{t}_0\hat{\beta} \rangle$ satisfies the assumptions of Lemma 3.1 with $(N,\Gamma) = (\hat{M},\hat{\Gamma})$. Under the similar notations

$$\hat{M}^{\mathbb{Z}_p} = \cup \hat{F}_j, \quad \hat{x}_0 \in \hat{F}_0, \quad \hat{\Lambda} = \{\hat{\gamma} \in \hat{\Gamma} | \hat{\gamma} \hat{F}_0 = \hat{F}_0 \}.$$

It follows from Lemma 3.1 that $[\hat{\Gamma} : \hat{\Lambda}] \leq b(n)$.

Then following the same proof in Case 1, we can obtain a dimension reduction on $\hat{F}_0/\hat{\Lambda}$ and find a cyclic subgroup $\langle \hat{\gamma} \rangle$ in $\hat{\Gamma}$ of index at most C(n). Let $\gamma \in \pi_1(M)$ be a lift of this $\hat{\gamma} \in \hat{\Gamma} = \pi_1(M)/\langle \alpha \rangle$. By Theorem 2.1, γ preserves some circle orbit $S^1 x_0$ on \widetilde{M} . Note that this $S^1 x_0$ is a free circle orbit due to the assumption of Case 2. We choose the unique $\theta \in S^1$ such that $\gamma x_0 = \theta x_0$ and define a group homomorphism by

$$\psi: \langle \alpha, \gamma \rangle \to S^1$$
 such that $\psi(\alpha) = \alpha, \psi(\gamma) = \theta$.

If a word w of $\langle \alpha, \gamma \rangle$ is in the kernel of ψ , then $w \cdot x_0 = x_0$ and thus w = e. Hence ψ is injective and $\langle \alpha, \gamma \rangle$ must be cyclic. Now we complete the proof of Case 2 by

$$[\pi_1(M):\langle \alpha,\gamma\rangle] \le [\pi_1(M)/H:\langle \alpha,\gamma\rangle/H] = [\widehat{\Gamma}:\widehat{\gamma}] \le C(n).$$

For the base step n = 3, in either case above, we obtain (F_0, Λ) or $(\hat{F}_0, \hat{\Lambda})$ is (S^1, Λ) . Hence Λ is cyclic.