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1. FIRST FUNDAMENTAL FORM AS MEASUREMENT WITHIN THE SURFACE

Let S be a surface in R3. Recall that for each p ∈ S, we have the tangent space Tp S and the
normal space Np S, both of which are linear subspaces in R3.

Definition 1.1. We define the first fundamental form I : Tp S ×Tp S →R at each point p ∈ S by

I(X ,Y ) = X ·Y ,

where · is the dot product in R3.

For each p ∈ S, the first fundamental form is an inner product on Tp S, that is, a bilinear,
symmetric, and positive definite map. With it, we can naturally talk about, for example, the
length of tangent vectors and the angle between any pair. As the point p moves in the surface,
the first fundamental form varies.

In a Nutshell. The first fundamental form is an intrinsic measurement within the surface.

Let q(u1,u2) be a parametric equation for S, then {∂1q,∂2q} forms a basis for Tp S for any
p ∈ S. We can write any tangent vector X ∈ Tp S under this basis as

X = X i∂i q.

Then for all X ,Y ∈ Tp S, we have formula

I(X ,Y ) = I(X i∂i q,Y j∂ j q) = X i Y j gi j ,

where gi j = I(∂i q,∂ j q) forms a 2×2 symmetric and positive definite matrix. We call this matrix
(gi j ) the matrix representation of I under the parametric equation q(u1,u2), usually written
as [I]. In matrix form, we obtain

I(X ,Y ) = (
X 1 X 2)(g11 g12

g21 g22

)(
Y 1

Y 2

)
.
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Remark 1.2. We remark that by definition I is clearly independent of the parametric equations,
but the matrix representation [I] depends on q(u1,u2).

Definition 1.3. Let S1 and S2 be two surfaces in R3 with first fundamental form I1 and I2,
respectively. Let F : S1 → S2 be a smooth map. We say that F is a (local) isometry, if F preserves
the first fundamental form, that is,

I1(X ,Y ) = I2(DFp (X ),DFp (Y ))

for all p ∈ S1 and all X ,Y ∈ Tp S1.

Proposition 1.4. Let q(u1,u2) be a parametric equation for S1 and let F : S1 → S2 be a smooth
map. We write [I1] as the first fundamental form of S1 under q(u1,u2), and [I2] as the first
fundamental form of S2 under F ◦q(u1,u2). Then F is an isometry if and only if [I1] = [I2].

Proof. Recall that we always have

DF (∂i q) = ∂i (F ◦q).

Suppose that F is an isometry. Then

I1
(
∂i q,∂ j q

)= I2
(
DF (∂i q),DF (∂ j q)

)= I2(∂i (F ◦q),∂ j (F ◦q)).

and thus [I1] = [I2].
Conversely, suppose that [I1] = [I2]. For any vectors X ,Y ∈ Tp S, we write

X = X i∂i q, Y = Y i∂i q.

Then under DF , we obtain

DF (X ) = X i∂i (F ◦q), DF (Y ) = Y i∂i (F ◦q).

Hence

I(X ,Y ) = X i Y j I1(∂i q,∂ j q) = X i Y j I2(∂i (F ◦q),∂ j (F ◦q)) = I2(DF (X ),DF (Y )).

□

To close this section, we prove a formula writing any vector Z under the basis {∂1q,∂2q, N },
where N is a unit normal vector field on S, by using the first fundamental form. This will be
useful in later sections.

Lemma 1.5. Let V be a linear space with a basis {e1, ...,en}. Let I be an inner product on V . We
denote gi j = I(ei ,e j ). Then for any vector X ∈V , we have

X = g i j I(X ,e j )ei ,

where (g i j ) is the inverse matrix of (gi j ).

Proof. We write X = X i ei . By direct calculation,

g i j I(X ,e j ) = g i j I(X k ek ,e j ) = X k g i j g j k = X kδi
k = X i .

The result follows. □
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Proposition 1.6. Let S be a surface in R3 with a parametric equation q(u1,u2). Then for all
p ∈ S and all X ∈ Tp S, it holds that

X = g i j I(X ,∂ j q)∂i q

In general, for any vector Z ∈R3, we have tangential and normal decomposition

Z = Z T +Z⊥ = g i j (Z ·∂ j q)∂i q + (Z ·N )N ,

where N is the unit normal vector field over S.

Proof. Using Lemma 1.5 and {∂1q,∂2q} as a basis of Tp S, the first part of the Proposition fol-
lows. For any vector Z inR3, we decompose it as Z = Z T+Z⊥, where Z T ∈ Tp S is the tangential
part of Z and Z⊥ ∈ Np S is the normal part, respectively. Noting that

Z ·∂i q = Z T ·∂i q = I(Z T,∂i q), Z⊥ = (Z ·N )N ,

we conclude
Z = Z T +Z⊥ = g i j (Z ·∂ j q)∂i q + (Z ·N )N .

□

2. SECOND FUNDAMENTAL FORM AS NORMAL PART OF DIRECTIONAL DERIVATIVE

Let S be a surface in R3 and let p ∈ S. Let X ∈ Tp S and Y be a vector field of S around p. The
main goal of this section and Section 4 is to decompose the directional derivative DX Y into
tangential and normal parts

DX Y = (DX Y )T + (DX Y )⊥.

In this section, we address the normal part (DX Y )⊥.
We first recall directional derivatives from vector calculus. Given a function f : U → R,

where U is an open subset of R3, and a vector X ∈ R3, the directional derivative of f along X
at a point p ∈R3 is defined as

DX f = d( f ◦ c)

d t

∣∣
t=0,

where c is a curve in R3 with c(0) = p and c ′(0) = X . (Usually, one may use c(t ) = p + t X , a
straight line, to define the directional derivative.) The definition DX f is independent of the
choice of c. In fact, under a standard Cartesian coordinate of R3, we write

f = f (x1, x2, x3), X = (X 1, X 2, X 3), c(t ) = (x1(t ), x2(t ), x3(t ));

then d xi

d t (0) = X i and by chain rule

d

d t

∣∣
t=0( f ◦ c) = ∂ f

∂xi
(p)

d xi

d t
(0) = ∂ f

∂xi
(p)X i .

Once the curve c is chosen, DX f only depends on the value of f on c. For a vector field Y in
U ⊆R3, we write

Y (x) = (Y 1(x),Y 2(x),Y 3(x)).

Then the directional derivative of Y along X at p is defined by taking directional derivative of
each component Y i , that is,

DX Y = (DX Y 1,DX Y 2,DX Y 3) = d(Y ◦ c)

d t

∣∣
t=0,

where c is any curve in R3 with c(0) = p and c ′(0) = X .
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Now we move on to surface theory. Let S be a surface and let p ∈ S. Let X ∈ Tp S and Y be a
vector field of S around p. Under a parametric equation q(u1,u2), we write

X = X i∂i q, Y (x) = Y i (x)∂i q.

We draw any curve γ : I → S such that γ(0) = p and γ′(0) = X . We can write γ as γ(t ) =
q(u1(t ),u2(t )). By construction, for all i we have

dui

d t
(0) = X i .

Restricting the vector field Y to γ gives a vector field along γ, that is, Y (γ(t )). We will calculate
the normal part of DX Y .

d(Y ◦γ)

d t
= d

d t

(
(Y i ◦γ)

∂q

∂ui

)
=

(
d

d t
(Y i ◦γ)

)
∂q

∂ui
+ (Y i ◦γ)

d

d t

(
∂q

∂ui

)
The first term above is in the tangential direction so it won’t contribute to the normal part. By
chain rule, the second term is

(Y i ◦γ)
d

d t

(
∂q

∂ui

)
= (Y i ◦γ)

∂2q

∂u j∂ui

du j

d t
.

To find (DX Y )⊥, it suffices to evaluate N ·DX Y .

N ·DX Y = N · d(Y ◦γ)

d t
(0) = Y i (γ(0))

(
N · ∂2q

∂u j∂ui

∣∣
p

)
du j

d t
(0) = Y i (p)Li j X j ,

where (Li j ) is the 2×2 symmetric matrix with components N ·∂i j q evaluated at p. Written in
the matrix form, we have the formula

N ·DX Y = (
Y 1(p) Y 2(p)

)(L11 L12

L21 L22

)(
X 1

X 2

)
.

Definition 2.1. We define the second fundamental form II : Tp S×Tp S →R at each point p ∈ S
by

II(X ,Y ) = N ·DX Ỹ ,

where Ỹ is a smooth vector field of S around p that extends Y (i.e., Ỹ (p) = Y ).

Remarks 2.2. (1) Under a parametric equation q(u1,u2), the above calculation yields

N ·DX Ỹ = X i Ỹ j (p)Li j = X i Y j Li j .

Hence N ·DX Ỹ does not depend on the choice of Ỹ . This allows us to define II with domain
Tp S ×Tp S.
(2) It follows from II(X ,Y ) = X i Y j Li j and Li j = L j i that II is bilinear and symmetric.
(3) It follows from II(X ,Y ) = N ·DX Ỹ that II is independent of the parametric equations of S.
(4) To evaluate II(X , X ), we can choose a curve γ in S with γ(0) = p, γ′(0) = X , and a vector field
Y of S around p such that it restricts to the velocity vector field γ′ on γ. Then Y (p) = γ′(0) = X
and

II(X , X ) = N · d(Y ◦γ)

d t
(0) = N · dγ′

d t
(0) = N ·γ′′(0),
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which is the normal component of γ′′. Writing X = γ′(0) = X i∂i q , we also have

N ·γ′′(0) = II(X , X ) = X i X j Li j .

This shows that the normal part of the acceleration γ′′(0)⊥ = (N ·γ′′(0))N only depends on the
velocity γ′(0) = X .

3. CURVATURE AS THE CHANGE OF NORMAL DIRECTION

Definition 3.1. Let S be a surface in R3 with a unit normal vector field N . We think of N as a
map (called the Gauss map)

N : S →S2,

where S2 is the unit sphere in R3 with center 0. The shape operator (or the Weingarten map)
L at p ∈ S is the negative of the differential of N , that is,

L =−DNp : Tp S → TN (p)S
2

(there is no standard agreement whether to use + or − in the definition of L.)

Because
TN (p)S

2 = {v ∈R3|v ⊥ N (p)} = Tp S,

we understand the shape operator at p ∈ S as a linear map

L =−DNp : Tp S → Tp S

In a Nutshell. Curvature at p measures the infinitesimal change of N at p. Mathematically, it
is some quantity extracted from the linear map DNp .

The differential DN is closely related to directional derivative. In fact, we have

Lemma 3.2. Let X ∈ Tp S, then DN (X ) = DX N .

Proof. This follows from the definition of directional derivative and that of differential. In fact,
let γ : I → S be a curve on S with γ(0) = p and γ′(0) = X (p), then

DNp (X (p)) = d

d t
(N ◦γ)(0) = DX (p)N .

□

Proposition 3.3. I, II, and L =−DN are related by the formula

I(L(X ),Y ) = II(X ,Y ).

Consequently, L is self-adjoint with respect to I, that is,

I(L(X ),Y ) = I(X ,L(Y )).

Proof. By direct calculation and Lemma 3.2,

I(L(X ),Y ) =−DN (X ) ·Y =−DX N ·Y =−DX (N ·Y )+N ·DX Y = II(X ,Y ).

Because II is symmetric, it follows that L is self-adjoint. □

Corollary 3.4. Under a parametric equation q(u1,u2), the matrix representations [I], [II], and
[L] are related by

[L] = [I]−1[II].
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Proof. Here the matrix representation of L means the matrix [L] = (L j
i ) such that(

L(∂1q) L(∂2q)
)= (

∂1q ∂2q
)(L1

1 L1
2

L2
1 L2

2

)
.

Equivalently, we can write L(∂i q) = L j
i ∂ j q . By Lemma 1.5 and Proposition 3.3,

L j
i = g j k I(L(∂i q),∂k q) = g j k II(∂i q,∂k q) = g j k Lki .

In the matrix form, this reads [L] = [I]−1[II]. □

Remark 3.5. Though L is self-adjoint, its matrix representation [L] may not be symmetric be-
cause in general {∂i q} is not an orthonormal basis.

One measurement of a linear map (that is invariant under change of basis) is the eigen-
values. For a self-adjoint one, eigenvalues actually describe all the invariance. We recall the
result below from linear algebra.

Theorem 3.6. Let V be an n-dimensional real linear space with an inner product I. Let L : V →
V be a self-adjoint linear map. Then
(1) All eigenvalues of L are real;
(2) L has n many linearly independent eigenvectors {E1, ...,En} that form an orthonormal basis
w.r.t. I.

Applying Lemma 3.6 to the shape operator L, we derive

Proposition 3.7. At every point p ∈ S, L has real eigenvalues κ1,κ2 and corresponding eigen-
vectors E1,E2 which form an orthonormal basis of Tp S w.r.t. I.

Definitions 3.8. We call the above κi and Ei the principal curvature and the principal direc-
tion of S at p, respectively.

We define the Gaussian curvature and the mean curvature at p, respectively, as

K = detL = κ1κ2, H = 1

2
trL = 1

2
(κ1 +κ2).

Remarks 3.9. (1) All curvatures above are independent of the parametric equations.
(2) For a different choice of the unit normal vector N , L = −DN differs by a sign, then all κi

and H change their signs, while K does not change.
(3) To calculate the curvature, one can always use [L] = [I]−1[II] to calculate the eigenvalues of
[L]. Also, Gaussian curvature can be calculated by

K = det[L] = det[II]

det[I]
.

(4) For very special surfaces, there are other ways to calculate the curvature without going
through parametric equations. For example, in Petersen’s notes page 112, it was shown that
II = 1

R I with an inward unit normal N on the sphere of radius R. Then for all X ,Y ∈ Tp S and
all p ∈ S,

I(L(X ),Y ) = II(X ,Y ) = 1

R
I(X ,Y ).

Hence L(X ) = 1
R X for all X ∈ Tp S. That is, the sphere of radius R has principal curvature

κ1 = κ2 = 1/R and Gaussian curvature 1/R2.
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Proposition 3.10. The principal curvatures at p ∈ S are the minimum and maximum of

{II(X , X )|X ∈ Tp S, I(X , X ) = 1}.

Proof. Let E1,E2 be the principal directions at p. We write any unit vector E ∈ Tp S as

E = cosθE1 + sinθE2.

Then by linearity of II,

II(E ,E) = cos2θII(E1,E1)+2cosθ sinθII(E1,E2)+ sin2θII(E2,E2).

We calculate II(Ei ,E j ) by

II(Ei ,E j ) = I(L(Ei ),E j ) = I(κi Ei ,E j ) = κiδi j .

Hence
II(E ,E) = κ1 cos2θ+κ2 sin2θ =: f (θ).

One can easily check that f (θ) has minimum and maximum as κ1 and κ2. □

4. COVARIANT DERIVATIVE AS TANGENTIAL PART OF DIRECTIONAL DERIVATIVE

In Section 3, we used both fundamental forms I and II to calculate the curvature, which
measures the change of N . Recall that the second fundamental form describes the acceler-
ations in N direction while the first one has nothing to do with N . So naturally, one expects
that II is required to understand the curvature. In Gauss’s Theorema Egregium, he observed
that the Gaussian curvature K can be computed by only knowing I. In other words, Gauss-
ian curvature is intrinsic, depending only on measurements within the surface, not related
to the normal direction. To understand this surprising result by Gauss, we will first study the
tangential part of DX Y in this section.

Recall that from Section 2, at every point p ∈ S the normal part (DX Y )⊥ = II(X ,Y )N only
depends on the value of X ,Y at p, while a derivative should depend on the local information
of Y near p. In contrast, we will see that the tangential part (DX Y )T behaves like derivatives
(see Proposition 4.10); and we will call it the covariant derivative.

In a Nutshell. The covariant derivative is the intrinsic vector calculus within the surface.

Definition 4.1. Let X ∈ Tp S and let Y be a smooth vector field on S. The covariant derivative
of Y along X is defined as the tangential part of DX Y , that is,

∇X Y = (DX Y )T.

We use the same setup as in Section 2, where we calculated the normal part of DX Y . Let
X ∈ Tp S and let γ(t ) be a curve on S with γ(0) = p and γ′(0) = X . Let Y be a vector field of S
around p. Under a parametric equation q(u1,u2), we write

X = X i∂i q, Y = Y i (x)∂i q.

We will calculate the tangential part of DX Y .

d(Y ◦γ)

d t
(0) = d(Y i ◦γ)

d t
(0)

∂q

∂ui
(p)+ (Y i ◦γ(0))

d

d t

∣∣
t=0

(
∂q

∂ui

)
= DX Y i (p)

∂q

∂ui
(p)+Y i (p)

∂2q

∂u j∂ui
(p)

du j

d t
(0)

= (DX Y i )∂i q +Y i X j∂i j q.
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(We omitted p in the last line above for brevity, but everything should be evaluated at the
point p). The first term is in the tangential direction and is already written under the basis
{∂i q}. We apply Proposition 1.6 to rewrite the tangential part of the second term

(Y i X j∂i j q)T = Y i X j g kl I((∂i j q)T,∂l q)∂k q.

Introducing Christoffel symbols

Γi j ,l = ∂i j q ·∂l q = I((∂i j q)T,∂l q), Γk
i j = g klΓi j ,l ,

we have expression

(Y i X j∂i j q)T = Y i X j g klΓi j ,l∂k q = Y i X jΓk
i j∂k q.

We remark that Γi j ,k and Γk
i j are symmetric in i and j . To sum up,

∇X Y = (DX Y )T = (DX Y i )∂i q + (Y i X j∂i j q)T =
(
DX Y k +X i Y jΓk

i j

)
∂k q.

Together with the normal part in Section 2, we have

Proposition 4.2. Let X ∈ Tp S and Y be a smooth vector field of S around p. Then

DX Y =∇X Y + II(X ,Y )N

=
(
DX Y k +X i Y jΓk

i j

)
∂k q + (X i Y j Li j )N .

Remarks 4.3. (1) Fixing i and j , we use

X = ∂i q, Y = ∂ j q.

Then X i = 1 and Y j = 1 with all other components functions of X and Y as 0. Then D∂i q = ∂
∂ui

(see Remark 4.5 below) and Proposition 4.2 yield the Gauss equations

∂i j q = D∂i q∂ j q = Γk
i j∂k q +Li j N .

(2) Sometimes, Y is written along the curve γ as

Y = Y i (t )∂i q.

Then it follows from the same calculation above that

∇X Y =
(

dY k

d t
+X i Y jΓk

i j

)
∂k q

(3) Let γ(t ) = q(u1(t ),u2(t )) be a curve in S. We use X = Y as the velocity of γ:

γ′(t ) = dui

d t
(t )∂i q.

Then γ′′ has decomposition

γ′′ =∇γ′γ′+ II(γ′,γ′)N

=
(

d

d t

(
duk

d t

)
+ dui

d t

du j

d t
Γk

i j

)
∂k q + II(γ′,γ′)N

=
(

d 2uk

d t 2
+ dui

d t

du j

d t
Γk

i j

)
∂k q +

(
dui

d t

du j

d t
Li j

)
N .

Definition 4.4. A curve γ on S is called a geodesic, if ∇γ′γ′ ≡ 0.
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Under a parametric equation q(u1,u2), a curve γ= q(u1(t ),u2(t )) is a geodesic if and only
if γ obeys the geodesic equations (k = 1,2):

d 2uk

d t 2
+ dui

d t

du j

d t
Γk

i j = 0.

Remark 4.5. We give a few more explanations on D∂i q = ∂
∂ui . To be more precisely, for any

vector field Z (not necessarily tangent to S), we have

(D∂i q Z )|q(u1,u2) =
∂(Z ◦q)

∂ui
(u1,u2).

We prove the above formula for i = 1. Let p = q(u1
0,u2

0) ∈ S. The curve γ(t ) = q(u1
0 + t ,u2

0)
satisfies γ(0) = p and γ′(0) = ∂1q . Thus at p,

D∂i q Z = d(Z ◦γ)

d t

∣∣
t=0 =

d

d t

∣∣
t=0(Z ◦q(u1

0 + t ,u2
0)) = ∂(Z ◦q)

∂u1
(u1

0,u2
0).

For the coordinate vector field ∂ j q , we usually abuse the notation to treat it as a vector field
on S though it has domain as the parameter space U , not S. With this understanding, we can
write

D∂i q∂ j q = ∂i (∂ j q) = ∂i j q.

Sometimes, we write the unit normal vector field N as N (u1,u2) with domain being the
parameter space U (for example, when we calculate N as the re-normalization of ∂1q ×∂2q).
Then with the same understanding, we write

D∂i q N = ∂i N .

Using Lemma 3.2 and notations in Section 3, the left hand side is

D∂i q N = DN (∂i q) =−L(∂i q) =−L j
i ∂ j q.

This leads to the Weingarten equations

∂i N =−L j
i ∂ j q.

We summarize the Gauss and Weingarten equations as below.

Theorem 4.6. Let S be a surface inR3 with a parametric equation q(u1,u2) and let N (u1,u2) be
a unit normal vector field on S. Then the frame {∂1q,∂2q, N } on S obeys the partial differential
equations

∂i (∂ j q) = Γk
i j∂k q +Li j N ,

∂i N =−Lk
i ∂k q.

Proposition 4.7. Let q(u1,u2) be a parametric equation of S, then

Γi j ,k = 1

2
(∂i g j k +∂ j gi k −∂k gi j ).

Hence the Christoffel symbols Γi j ,k and Γk
i j can be computed from [I].
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Proof. For each i , j , and k, we have

∂k gi j = ∂k (∂i q ·∂ j q) = ∂ki q ·∂ j q +∂i q ·∂k j q = Γki , j +Γk j ,i .

Using the fact that Γi j ,k is symmetric in i and j , we obtain

∂i g j k +∂ j gi k −∂k gi j

=Γi j ,k +Γi k, j +Γ j i ,k +Γ j k,i −Γki , j −Γk j ,i

=2Γi j ,k .

□

Remark 4.8. For surfaces, the Christoffel symbol Γi j ,k always has a repeated pair in {i , j ,k} ⊆
{1,2}. One can use this to derive easier computations; see Example 5.4.

We can take a step further to define ∇ as a map.

Definition 4.9. Let X(S) be the set of all vector fields on S. We define the Levi-Civita connec-
tion

∇ :X(S)×X(S) →X(S), (X ,Y ) 7→ ∇X Y

by (∇X Y )(p) =∇X (p)Y , where p ∈ S.

Proposition 4.10. The Levi-Civita connection ∇ satisfies the following properties: (below X , Y ,
Z are smooth vector fields on S; f and g are smooth functions on S.)
(1) ∇ f X+g Y Z = f ∇X Z + g∇Y Z .
(2) ∇X (aY +bZ ) = a∇X Y +b∇X Z , where a,b ∈R.
(3) ∇X ( f Y ) = (DX f )Y + f (∇X Y ).
(4) DX I(Y , Z ) = I(∇X Y , Z )+ I(X ,∇Y Z ).
(5) ∇X Y −∇Y X = DX Y −DY X .

Proof. (1,2,3) are left to the readers.
(4) Note that

(DX Y ) ·Z = (∇X Y ) ·Z = I(∇X Y , Z )

because the normal part of DX Y won’t contribute to the dot product of DX Y with a tangent
vector. Then

DX I(Y , Z ) = DX (Y ·Z ) = (DX Y ) ·Z +Y · (DX Z ) = I(∇X Y , Z )+ I(X ,∇Y Z ).

(5) We decompose DX Y −DY X into tangential and normal parts

DX Y −DY X = ((∇X Y )− II(X ,Y )N )− (∇Y X − II(Y , X )N ).

The desired formula follows since II is symmetric. □

5. GAUSSIAN CURVATURE AS A COMMUTATOR OF COVARIANT DERIVATIVES

In this section, we prove Gauss’s Theorema Egregium. The proof also gives an interpretation
of the Gaussian curvature K as a commutator of covariant derivatives.

Recall that for the Euclidean plane R2 (or Rn), the partial derivatives are always commuta-
tive ∂x y = ∂y x as long as we apply them to smooth functions or vector fields. The same com-
mutative feature also applies when we use the polar coordinate: ∂rθ = ∂θr , or any other coor-
dinate system ofR2. This no longer holds in general when we consider the intrinsic derivatives
on a surface; in other words ∇∂1q∇∂2q and ∇∂2q∇∂1q could be different.
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In a Nutshell. Gaussian curvature is a quantity that measures how commuting the covariant
derivatives ∇∂1q and ∇∂2q are.

Definition 5.1. Let q(u1,u2) be a parametric equation for on S. We define

R(∂i q,∂ j q)∂k q =∇∂i q∇∂ j q∂k q −∇∂ j q∇∂i q∂k q.

Ri j kl = I(R(∂i q,∂ j q)∂k q,∂l q).

The commutator ∇∂i q∇∂ j q −∇∂ j q∇∂i q tells how much the covariant derivatives ∇∂i q and
∇∂ j q fail to be commutative. By Proposition 4.7, covariant derivatives, thus Ri j kl , can be com-
puted from the first fundamental form [I].

Theorem 5.2. (Gauss’s Theorema Egregium) Under a parametric equation q(u1,u2), the Gauss-
ian curvature K has formula

K = R1221

det[I]
.

In particular, K can be computed by knowing only [I].

Proof. By Remark 3.9(3), it suffices to show that det[II] = R1221. According to Remark 4.3(1),
we have tangential and normal decomposition of ∂i j q as

∂i j q =∇∂i q∂ j q +Li j N .

Hence

∂11q ·∂22q = I(∇∂1q∂1q,∇∂2q∂2q)+L11L22

∂12q ·∂21q = I(∇∂1q∂2q,∇∂2q∂1q)+L12L21.

This allows us to calculate det[II] by

det[II] =L11L22 −L12L21

={∂11q ·∂22q −∂12q ·∂21q}

+ {I(∇∂1q∂2q,∇∂2q∂1q)− I(∇∂1q∂1q,∇∂2q∂2q)}

=:{A}+ {B}.

We apply Proposition 4.10(4) to the second term {B}:

{B} =∂2I(∇∂1q∂2q,∂1q)− I(∇∂2q∇∂1q∂2q,∂1q)

−∂1I(∂1q,∇∂2q∂2q)+ I(∂1q,∇∂1q∇∂2q∂2q)

=I(R(∂1q,∂2q)∂2q,∂1q)+∂2(∂12q ·∂1q)−∂1(∂1q ·∂22q)

=R1221 +∂212q ·∂1q +∂12q ·∂21q −∂11q ·∂22q −∂1q ·∂122q

=R1221 − {A}.

This completes the proof of det[II] = {A}+ {B} = R1221. □

Corollary 5.3. Gaussian curvature is invariant under isometries.

Proof. This follows immediately from Theorem 5.2 and Proposition 1.4. □

Example 5.4. As an example, we calculate the Gaussian curvature of a surface S with first
fundamental form

[I] =
(
1 0
0 f (r )2

)
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under a parametric equation q(r,θ) of S, where r > 0. We first calculate the Christoffel sym-
bols Γi j ,k .

Γ11,1 = ∂11q ·∂1q = 1

2
∂1(∂1q ·∂1q) = 0,

Γ22,2 = ∂22q ·∂2q = 1

2
∂2(∂2q ·∂2q) = 0,

Γ12,1 = Γ21,1 = ∂21q ·∂1q = 1

2
∂2(∂1q ·∂1q) = 0,

Γ12,2 = Γ21,2 = ∂12q ·∂2q = 1

2
∂1(∂2q ·∂2q) = f f ′,

Γ11,2 = ∂11q ·∂2q = ∂1(∂1q ·∂2q)−∂1q ·∂12q = 0,

Γ22,1 = ∂22q ·∂1q = ∂2(∂2q ·∂1q)−∂2q ·∂21q =− f f ′.

Then we use Γk
i j = Γi j ,l g l k to calculate Γk

i j .

Γ1
11 = Γ11,l g l 1 = 0, Γ2

22 = Γ22,l g l2 = 0,

Γ1
12 = Γ1

21 = Γ12,l g l 1 = 0, Γ2
12 = Γ2

21 = Γ12,l g l2 = f ′

f
,

Γ2
11 = Γ11,l g l2 = 0, Γ1

22 = Γ22,l g l1 =− f f ′.

This leads to the covariant derivatives and their commutator.

∇∂1q∂1q = Γk
11∂k q = 0,

∇∂2q∂2q = Γk
22∂k q =− f f ′∂1q,

∇∂1q∂2q =∇∂2q∂1q = Γk
12∂k q = f ′

f
∂2q,

∇∂1q∇∂2q∂2q =∇∂1q (− f f ′∂1q) =−( f ′′ f + ( f ′)2)∂1q,

∇∂2q∇∂1q∂2q =∇∂2q (
f ′

f
∂2q) = f ′

f
· (− f f ′)∂1q =−( f ′)2∂1q,

R(∂1q,∂2q)∂2q =−( f ′′ f + ( f ′)2)∂1q + ( f ′)2∂1q =− f ′′ f ∂1q.

R1221 = I(R(∂1q,∂2q)∂2q,∂1q) =− f ′′ f .

Hence Gaussian curvature

K = R1221

det[I]
=− f ′′

f
.

One can use this formula to derive [I] = diag{1, f 2(r )} with constant curvature:

f (r ) = 1p
κ

sin(
p
κr ), where κ> 0, K = κ> 0.

f (r ) = r, K = 0.

f (r ) = 1p−κ sinh(
p−κr ), where κ< 0, K = κ< 0.
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Remark 5.5. One may wonder besides R1221, whether {Ri j kl } gives other useful quantities. The
answer is no. In fact, Ri j kl has skew-symmetry

Ri j kl =−R j i kl , Ri j kl =−Ri j lk .

Hence for {i , j ,k, l } ⊆ {1,2}, R1221 determines all the nonzero Ri j kl .

The skew-symmetry of Ri j kl in i and j follows directly from the definition. We prove the
skew-symmetry in k and l below.

Proposition 5.6. For any smooth vector field Z of S, we have

I(R(∂i q,∂ j q)Z , Z ) = 0,

where R(∂i q,∂ j q)Z =∇∂i q∇∂ j q Z −∇∂ j q∇∂i q Z . Consequently, Ri j kl = Ri j lk .

Proof. Let us consider the function f = 1
2 I(Z , Z ). By Proposition 4.10(4), we have

∂i f = 1

2
D∂i q I(Z , Z ) = I(∇∂i q Z , Z );

∂ j i f = D∂ j q I(∇∂i q Z , Z )

= I(∇∂ j q∇∂i q Z , Z )+ I(∇∂i q Z ,∇∂ j q Z ).

Switching i and j yields

∂i j f = I(∇∂i q∇∂ j q Z , Z )+ I(∇∂ j q Z ,∇∂i q Z ).

Subtracting one by the other, we have

0 = I(∇∂i q∇∂ j q Z , Z )− I(∇∂ j q∇∂i q Z , Z ) = I(R(∂i q,∂ j q)Z , Z ).

To see the skew-symmetry in k and l , we use Z = ∂k q +∂l q . Then by Proposition 4.10(2),

0 =I(R(∂i q,∂ j q)Z , Z )

=I(R(∂i q,∂ j q)∂k q,∂k q)+ I(R(∂i q,∂ j q)∂l q,∂l q)

+ I(R(∂i q,∂ j q)∂k q,∂l q)+ I(R(∂i q,∂ j q)∂l q,∂k q)

=Ri j kl +Ri j lk .

□
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